30,152 research outputs found

    Mathematical Models in Farm Planning: A Survey

    Get PDF

    Distributed Optimization in Energy Harvesting Sensor Networks with Dynamic In-network Data Processing

    Get PDF
    Energy Harvesting Wireless Sensor Networks (EH- WSNs) have been attracting increasing interest in recent years. Most current EH-WSN approaches focus on sensing and net- working algorithm design, and therefore only consider the energy consumed by sensors and wireless transceivers for sensing and data transmissions respectively. In this paper, we incorporate CPU-intensive edge operations that constitute in-network data processing (e.g. data aggregation/fusion/compression) with sens- ing and networking; to jointly optimize their performance, while ensuring sustainable network operation (i.e. no sensor node runs out of energy). Based on realistic energy and network models, we formulate a stochastic optimization problem, and propose a lightweight on-line algorithm, namely Recycling Wasted Energy (RWE), to solve it. Through rigorous theoretical analysis, we prove that RWE achieves asymptotical optimality, bounded data queue size, and sustainable network operation. We implement RWE on a popular IoT operating system, Contiki OS, and eval- uate its performance using both real-world experiments based on the FIT IoT-LAB testbed, and extensive trace-driven simulations using Cooja. The evaluation results verify our theoretical analysis, and demonstrate that RWE can recycle more than 90% wasted energy caused by battery overflow, and achieve around 300% network utility gain in practical EH-WSNs

    Energy-Efficient Antenna Selection and Power Allocation for Large-Scale Multiple Antenna Systems with Hybrid Energy Supply

    Full text link
    The combination of energy harvesting and large-scale multiple antenna technologies provides a promising solution for improving the energy efficiency (EE) by exploiting renewable energy sources and reducing the transmission power per user and per antenna. However, the introduction of energy harvesting capabilities into large-scale multiple antenna systems poses many new challenges for energy-efficient system design due to the intermittent characteristics of renewable energy sources and limited battery capacity. Furthermore, the total manufacture cost and the sum power of a large number of radio frequency (RF) chains can not be ignored, and it would be impractical to use all the antennas for transmission. In this paper, we propose an energy-efficient antenna selection and power allocation algorithm to maximize the EE subject to the constraint of user's quality of service (QoS). An iterative offline optimization algorithm is proposed to solve the non-convex EE optimization problem by exploiting the properties of nonlinear fractional programming. The relationships among maximum EE, selected antenna number, battery capacity, and EE-SE tradeoff are analyzed and verified through computer simulations.Comment: IEEE Globecom 2014 Selected Areas in Communications Symposium-Green Communications and Computing Trac

    Groundwater research and management: integrating science into management decisions. Proceedings of IWMI-ITP-NIH International Workshop on "Creating Synergy Between Groundwater Research and Management in South and Southeast Asia," Roorkee, India, 8-9 February 2005

    Get PDF
    Groundwater management / Governance / Groundwater development / Artificial recharge / Water quality / Aquifers / Groundwater irrigation / Water balance / Simulation models / Watershed management / Water harvesting / Decision making / South East Asia / Bangladesh / China / India / Nepal / Pakistan / Syria
    • …
    corecore