17,525 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    High-Level Object Oriented Genetic Programming in Logistic Warehouse Optimization

    Get PDF
    Disertační práce je zaměřena na optimalizaci průběhu pracovních operací v logistických skladech a distribučních centrech. Hlavním cílem je optimalizovat procesy plánování, rozvrhování a odbavování. Jelikož jde o problém patřící do třídy složitosti NP-težký, je výpočetně velmi náročné nalézt optimální řešení. Motivací pro řešení této práce je vyplnění pomyslné mezery mezi metodami zkoumanými na vědecké a akademické půdě a metodami používanými v produkčních komerčních prostředích. Jádro optimalizačního algoritmu je založeno na základě genetického programování řízeného bezkontextovou gramatikou. Hlavním přínosem této práce je a) navrhnout nový optimalizační algoritmus, který respektuje následující optimalizační podmínky: celkový čas zpracování, využití zdrojů, a zahlcení skladových uliček, které může nastat během zpracování úkolů, b) analyzovat historická data z provozu skladu a vyvinout sadu testovacích příkladů, které mohou sloužit jako referenční výsledky pro další výzkum, a dále c) pokusit se předčit stanovené referenční výsledky dosažené kvalifikovaným a trénovaným operačním manažerem jednoho z největších skladů ve střední Evropě.This work is focused on the work-flow optimization in logistic warehouses and distribution centers. The main aim is to optimize process planning, scheduling, and dispatching. The problem is quite accented in recent years. The problem is of NP hard class of problems and where is very computationally demanding to find an optimal solution. The main motivation for solving this problem is to fill the gap between the new optimization methods developed by researchers in academic world and the methods used in business world. The core of the optimization algorithm is built on the genetic programming driven by the context-free grammar. The main contribution of the thesis is a) to propose a new optimization algorithm which respects the makespan, the utilization, and the congestions of aisles which may occur, b) to analyze historical operational data from warehouse and to develop the set of benchmarks which could serve as the reference baseline results for further research, and c) to try outperform the baseline results set by the skilled and trained operational manager of the one of the biggest warehouses in the middle Europe.

    Study of onboard expert systems to augment space shuttle and space station autonomy

    Get PDF
    The feasibility of onboard crew activity planning was examined. The use of expert systems technology to aid crewmembers in locating stowed equipment was also investigated. The crew activity planning problem, along with a summary of past and current research efforts, was discussed in detail. The requirements and specifications used to develop the crew activity planning system was also defined. The guidelines used to create, develop, and operate the MFIVE Crew Scheduler and Logistics Clerk were discussed. Also discussed is the mathematical algorithm, used by the MFIVE Scheduler, which was developed to aid in optimal crew activity planning

    Enhancing Job Scheduling of an Atmospheric Intensive Data Application

    Get PDF
    Nowadays, e-Science applications involve great deal of data to have more accurate analysis. One of its application domains is the Radio Occultation which manages satellite data. Grid Processing Management is a physical infrastructure geographically distributed based on Grid Computing, that is implemented for the overall processing Radio Occultation analysis. After a brief description of algorithms adopted to characterize atmospheric profiles, the paper presents an improvement of job scheduling in order to decrease processing time and optimize resource utilization. Extension of grid computing capacity is implemented by virtual machines in existing physical Grid in order to satisfy temporary job requests. Also scheduling plays an important role in the infrastructure that is handled by a couple of schedulers which are developed to manage data automaticall

    Guidelines for the deployment and implementation of manufacturing scheduling systems

    Full text link
    It has frequently been stated that there exists a gap between production scheduling theory and practice. In order to put theoretical findings into practice, advances in scheduling models and solution procedures should be embedded into a piece of software - a scheduling system - in companies. This results in a process that entails (1) determining its functional features, and (2) adopting a successful strategy for its development and deployment. In this paper we address the latter question and review the related literature in order to identify descriptions and recommendations of the main aspects to be taken into account when developing such systems. These issues are then discussed and classified, resulting in a set of guidelines that can help practitioners during the process of developing and deploying a scheduling system. In addition, identification of these issues can provide some insights to drive theoretical scheduling research towards those topics more in demand by practitioners, and thus help to close the aforementioned gap.Framiñan Torres, JM.; Ruiz García, R. (2012). Guidelines for the deployment and implementation of manufacturing scheduling systems. International Journal of Production Research. 50(7):1799-1812. doi:10.1080/00207543.2011.564670S17991812507Baek, D. H. (1999). A visualized human-computer interactive approach to job shop scheduling. International Journal of Computer Integrated Manufacturing, 12(1), 75-83. doi:10.1080/095119299130489Comesaña Benavides, J. A., & Carlos Prado, J. (2002). Creating an expert system for detailed scheduling. International Journal of Operations & Production Management, 22(7), 806-819. doi:10.1108/01443570210433562Bensana, E. 1986. An expert-system approach to industrial job-shop scheduling. In: Proceedings of the 1986 IEEE international conference on robotics and automation. 1986. Vol. 3, pp.1645–1650.Berglund, M., & Karltun, J. (2007). Human, technological and organizational aspects influencing the production scheduling process. International Journal of Production Economics, 110(1-2), 160-174. doi:10.1016/j.ijpe.2007.02.024Besbes, W., Teghem, J., & Loukil, T. (2010). Scheduling hybrid flow shop problem with non-fixed availability constraints. European J. of Industrial Engineering, 4(4), 413. doi:10.1504/ejie.2010.035652Bhattacharyya, S., & Koehler, G. J. (1998). Learning by Objectives for Adaptive Shop-Floor Scheduling. Decision Sciences, 29(2), 347-375. doi:10.1111/j.1540-5915.1998.tb01580.xBitran, G. R., & Tirupati, D. (1988). OR Practice—Development and Implementation of a Scheduling System for a Wafer Fabrication Facility. Operations Research, 36(3), 377-395. doi:10.1287/opre.36.3.377Buxey, G. (1989). Production scheduling: Practice and theory. European Journal of Operational Research, 39(1), 17-31. doi:10.1016/0377-2217(89)90349-4Chen, J.-F. (2004). Unrelated parallel machine scheduling with secondary resource constraints. The International Journal of Advanced Manufacturing Technology, 26(3), 285-292. doi:10.1007/s00170-003-1622-1Collinot, A., Le Pape, C., & Pinoteau, G. (1988). SONIA: A knowledge-based scheduling system. Artificial Intelligence in Engineering, 3(2), 86-94. doi:10.1016/0954-1810(88)90024-6Cowling, P. (2003). A flexible decision support system for steel hot rolling mill scheduling. Computers & Industrial Engineering, 45(2), 307-321. doi:10.1016/s0360-8352(03)00038-xDudek, R. A., Panwalkar, S. S., & Smith, M. L. (1992). The Lessons of Flowshop Scheduling Research. Operations Research, 40(1), 7-13. doi:10.1287/opre.40.1.7Dumond, E. J. (2005). Understanding and using the capabilities of finite scheduling. Industrial Management & Data Systems, 105(4), 506-526. doi:10.1108/02635570510592398Fox, M. S., & Smith, S. F. (1984). ISIS?a knowledge-based system for factory scheduling. Expert Systems, 1(1), 25-49. doi:10.1111/j.1468-0394.1984.tb00424.xFraminan, J. M., & Ruiz, R. (2010). Architecture of manufacturing scheduling systems: Literature review and an integrated proposal. European Journal of Operational Research, 205(2), 237-246. doi:10.1016/j.ejor.2009.09.026Freed, T., Doerr, K. H., & Chang, T. (2007). In-house development of scheduling decision support systems: case study for scheduling semiconductor device test operations. International Journal of Production Research, 45(21), 5075-5093. doi:10.1080/00207540600818351Gao, C and Tang, L. 2008. A decision support system for color-coating line in steel industry. In: Proceedings of the IEEE international conference on automation and logistics, ICAL 2008. 2008. pp.1463–1468.Grant, T. J. (1986). Lessons for O.R. from A.I.: A Scheduling Case Study. Journal of the Operational Research Society, 37(1), 41-57. doi:10.1057/jors.1986.7Graves, S. C. (1981). A Review of Production Scheduling. Operations Research, 29(4), 646-675. doi:10.1287/opre.29.4.646HALSALL, D. N., MUHLEMANN, A. P., & PRICE, D. H. R. (1994). A review of production planning and scheduling in smaller manufacturing companies in the UK. Production Planning & Control, 5(5), 485-493. doi:10.1080/09537289408919520Higgins, P. G. (1996). Interaction in hybrid intelligent scheduling. International Journal of Human Factors in Manufacturing, 6(3), 185-203. doi:10.1002/(sici)1522-7111(199622)6:33.0.co;2-6Kanet, J. J., & Adelsberger, H. H. (1987). Expert systems in production scheduling. European Journal of Operational Research, 29(1), 51-59. doi:10.1016/0377-2217(87)90192-5Kathawala, Y., & Allen, W. R. (1993). Expert Systems and Job Shop Scheduling. International Journal of Operations & Production Management, 13(2), 23-35. doi:10.1108/01443579310025286Kerr, R. M. (1992). Expert systems in production scheduling: Lessons from a failed implementation. Journal of Systems and Software, 19(2), 123-130. doi:10.1016/0164-1212(92)90063-pKnolmayer, G., Mertens, P., & Zeier, A. (2002). Supply Chain Management Based on SAP Systems. doi:10.1007/978-3-540-24816-3Leachman, R. C., Benson, R. F., Liu, C., & Raar, D. J. (1996). IMPReSS: An Automated Production-Planning and Delivery-Quotation System at Harris Corporation—Semiconductor Sector. Interfaces, 26(1), 6-37. doi:10.1287/inte.26.1.6MACCARTHY, B. L., & LIU, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. International Journal of Production Research, 31(1), 59-79. doi:10.1080/00207549308956713McKay, K. N., & Black, G. W. (2007). The evolution of a production planning system: A 10-year case study. Computers in Industry, 58(8-9), 756-771. doi:10.1016/j.compind.2007.02.002McKay, K. N., Safayeni, F. R., & Buzacott, J. A. (1988). Job-Shop Scheduling Theory: What Is Relevant? Interfaces, 18(4), 84-90. doi:10.1287/inte.18.4.84McKay, K. N., Morton, T. E., Ramnath, P., & Wang, J. (2000). ?Aversion dynamics? scheduling when the system changes. Journal of Scheduling, 3(2), 71-88. doi:10.1002/(sici)1099-1425(200003/04)3:23.0.co;2-0MCKAY, K., PINEDO, M., & WEBSTER, S. (2009). PRACTICE-FOCUSED RESEARCH ISSUES FOR SCHEDULING SYSTEMS*. Production and Operations Management, 11(2), 249-258. doi:10.1111/j.1937-5956.2002.tb00494.xMissbauer, H., Hauber, W., & Stadler, W. (2009). A scheduling system for the steelmaking-continuous casting process. A case study from the steel-making industry. International Journal of Production Research, 47(15), 4147-4172. doi:10.1080/00207540801950136Numao, M and Morishita, S. 1989. A scheduling environment for steel-making processes. In: Proceedings of the 5th conference on artificial intelligence applications. 1989. pp.279–286.Olhager, J., & Rapp, B. (1995). Operations Research Techniques in Manufacturing Planning and Control Systems. International Transactions in Operational Research, 2(1), 29-43. doi:10.1111/j.1475-3995.1995.tb00003.xPerez-Gonzalez, P., & Framinan, J. M. (2009). Scheduling permutation flowshops with initial availability constraint: Analysis of solutions and constructive heuristics. Computers & Operations Research, 36(10), 2866-2876. doi:10.1016/j.cor.2008.12.018Pinedo, M., & Yen, B. P.-C. (1997). Annals of Operations Research, 70, 359-378. doi:10.1023/a:1018986524234Portougal, V., & Robb, D. J. (2000). Production Scheduling Theory: Just Where Is It Applicable? Interfaces, 30(6), 64-76. doi:10.1287/inte.30.6.64.11623Reisman, A., Kumar, A., & Motwani, J. (1997). Flowshop scheduling/sequencing research: a statistical review of the literature, 1952-1994. IEEE Transactions on Engineering Management, 44(3), 316-329. doi:10.1109/17.618173Steffen, MS. 1986. A survey of artificial intelligence-based scheduling systems. In: Proceedings of the fall industrial engineering conference. 1986.Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling. Management Science, 38(10), 1495-1509. doi:10.1287/mnsc.38.10.1495Tang, L., & Wang, G. (2008). Decision support system for the batching problems of steelmaking and continuous-casting production. Omega, 36(6), 976-991. doi:10.1016/j.omega.2007.11.002T’kindt, V., Billaut, J.-C., Bouquard, J.-L., Lenté, C., Martineau, P., Néron, E., … Tacquard, C. (2005). The e-OCEA project: towards an Internet decision system for scheduling problems. Decision Support Systems, 40(2), 329-337. doi:10.1016/j.dss.2004.04.001Wiers, VCS. 1997. Human–computer interaction in production scheduling: Analysis and design of decision support systems for production scheduling tasks. Ph.D. Thesis, Technische Universiteit Eindhoven, NetherlandsWiers, V. C. S. (2002). A case study on the integration of APS and ERP in a steel processing plant. Production Planning & Control, 13(6), 552-560. doi:10.1080/09537280210160321Wiers, V. C. S., & Van Der Schaaf, T. W. (1997). A framework for decision support in production scheduling tasks. Production Planning & Control, 8(6), 533-544. doi:10.1080/095372897234876Zhang, L., Krishnamurthy, A., Malmborg, C. J., & Heragu, S. S. (2009). Variance-based approximations of transaction waiting times in autonomous vehicle storage and retrieval systems. European J. of Industrial Engineering, 3(2), 146. doi:10.1504/ejie.2009.02360

    Promote-IT: An efficient Real-Time Tertiary-Storage Scheduler

    Get PDF
    Promote-IT is an efficient heuristic scheduler that provides QoS guarantees for accessing data from tertiary storage. It can deal with a wide variety of requests and jukebox hardware. It provides short response and confirmation times, and makes good use of the jukebox resources. It separates the scheduling and dispatching functionality and effectively uses this separation to dispatch tasks earlier than scheduled, provided that the resource constraints are respected and no task misses its deadline. To prove the efficiency of Promote-IT we implemented alternative schedulers based on different scheduling models and scheduling paradigms. The evaluation shows that Promote-IT performs better than the other heuristic schedulers. Additionally, Promote-IT provides response-times near the optimum in cases where the optimal scheduler can be computed
    corecore