11,883 research outputs found

    Optimizing fire station locations for the Istanbul metropolitan municipality

    Get PDF
    Copyright @ 2013 INFORMSThe Istanbul Metropolitan Municipality (IMM) seeks to determine locations for additional fire stations to build in Istanbul; its objective is to make residences and historic sites reachable by emergency vehicles within five minutes of a fire station’s receipt of a service request. In this paper, we discuss our development of a mathematical model to aid IMM in determining these locations by using data retrieved from its fire incident records. We use a geographic information system to implement the model on Istanbul’s road network, and solve two location models—set-covering and maximal-covering—as what-if scenarios. We discuss 10 scenarios, including the situation that existed when we initiated the project and the scenario that IMM implemented. The scenario implemented increases the city’s fire station coverage from 58.6 percent to 85.9 percent, based on a five-minute response time, with an implementation plan that spans three years

    Optimizing fire station locations for the Istanbul metropolitan municipality

    Get PDF
    Copyright @ 2013 INFORMSThe Istanbul Metropolitan Municipality (IMM) seeks to determine locations for additional fire stations to build in Istanbul; its objective is to make residences and historic sites reachable by emergency vehicles within five minutes of a fire station’s receipt of a service request. In this paper, we discuss our development of a mathematical model to aid IMM in determining these locations by using data retrieved from its fire incident records. We use a geographic information system to implement the model on Istanbul’s road network, and solve two location models—set-covering and maximal-covering—as what-if scenarios. We discuss 10 scenarios, including the situation that existed when we initiated the project and the scenario that IMM implemented. The scenario implemented increases the city’s fire station coverage from 58.6 percent to 85.9 percent, based on a five-minute response time, with an implementation plan that spans three years

    A taxonomy for emergency service station location problem

    Get PDF
    The emergency service station (ESS) location problem has been widely studied in the literature since 1970s. There has been a growing interest in the subject especially after 1990s. Various models with different objective functions and constraints have been proposed in the academic literature and efficient solution techniques have been developed to provide good solutions in reasonable times. However, there is not any study that systematically classifies different problem types and methodologies to address them. This paper presents a taxonomic framework for the ESS location problem using an operations research perspective. In this framework, we basically consider the type of the emergency, the objective function, constraints, model assumptions, modeling, and solution techniques. We also analyze a variety of papers related to the literature in order to demonstrate the effectiveness of the taxonomy and to get insights for possible research directions

    A Framework for Developing and Integrating Effective Routing Strategies Within the Emergency Management Decision-Support System, Research Report 11-12

    Get PDF
    This report describes the modeling, calibration, and validation of a VISSIM traffic-flow simulation of the San JosĂ©, California, downtown network and examines various evacuation scenarios and first-responder routings to assess strategies that would be effective in the event of a no-notice disaster. The modeled network required a large amount of data on network geometry, signal timings, signal coordination schemes, and turning-movement volumes. Turning-movement counts at intersections were used to validate the network with the empirical formula-based measure known as the GEH statistic. Once the base network was tested and validated, various scenarios were modeled to estimate evacuation and emergency vehicle arrival times. Based on these scenarios, a variety of emergency plans for San José’s downtown traffic circulation were tested and validated. The model could be used to evaluate scenarios in other communities by entering their community-specific data

    Optimal allocation of defibrillator drones in mountainous regions

    Get PDF
    Responding to emergencies in Alpine terrain is quite challenging as air ambulances and mountain rescue services are often confronted with logistics challenges and adverse weather conditions that extend the response times required to provide life-saving support. Among other medical emergencies, sudden cardiac arrest (SCA) is the most time-sensitive event that requires the quick provision of medical treatment including cardiopulmonary resuscitation and electric shocks by automated external defibrillators (AED). An emerging technology called unmanned aerial vehicles (or drones) is regarded to support mountain rescuers in overcoming the time criticality of these emergencies by reducing the time span between SCA and early defibrillation. A drone that is equipped with a portable AED can fly from a base station to the patient's site where a bystander receives it and starts treatment. This paper considers such a response system and proposes an integer linear program to determine the optimal allocation of drone base stations in a given geographical region. In detail, the developed model follows the objectives to minimize the number of used drones and to minimize the average travel times of defibrillator drones responding to SCA patients. In an example of application, under consideration of historical helicopter response times, the authors test the developed model and demonstrate the capability of drones to speed up the delivery of AEDs to SCA patients. Results indicate that time spans between SCA and early defibrillation can be reduced by the optimal allocation of drone base stations in a given geographical region, thus increasing the survival rate of SCA patients

    Locating fire-stations: an integrated approach for Belgium

    Get PDF
    This paper demonstrates the potential of a decision-support system developed for Belgium by a consortium of universities and a private firm, in the framework of a public call by the Ministry of the Interior. The system is designed to provide the Belgian emergency management administration with a complete decision-aid tool for the location of fire-stations. The originality of the project is that it includes a risk-modeling approach developed at a national scale. This analysis involves a multiscale GIS system which includes a thorough representation of the physical, human and economic spatial realities, a risk modeling approach, an adequate optimal location and allocation model (taking into account both queuing and staffing problems). The final result is an interactive operational tool for defining locations, equipment allocations, staffing, response times, the cost/efficiency trade-off, etc. which can be used in an assessment as well as a prospective context. It has numerous functionalities including rapid modification of the modeling conditions to allow for quick scenario analysis, multiscale analysis, and prospective analysis.ocation-allocations, GIS, fire-stations, Belgium

    A strategic approach for the ambulance covering of the province of Friesland

    Get PDF
    In the summer of 1995 the University of Twente, commissioned by the Province of Friesland, carried out research into the consequences of alternative locations for ambulances. The approach to this research was based on a network model, which represents the area to be covered. With this model the attendance times for the ambulances can be determined based on a shortest route algorithm. The attendance time is the time between the dispatching of the ambulance by Central Alarm after an emergency call and its arrival at the patient. The attendance times are compared with the norm as described by the Dutch law. The research concentrated on the Southwest and Northeast of the Province. In view of the norm of 15 minutes for the attendance time, the proposed alternative in the Southwest is the closing of one site and the moving of another. This is feasible under the condition that there will always be well-trained manpower available at the stations, and especially at the site which is moved. In the Northeast the moving of one post and the closure of another has no disadvantages with regard to attendance times. These conclusions appear to give a reliable picture of the real-world situation based on a conservative approach with the network model used, and, that higher travel speeds than those assumed are possible. \u

    Optimization Based Decision Support Tools for Fire and Rescue Resource Planning

    Full text link

    A mixed integer programming approach for asset protection during escaped wildfires

    Get PDF
    Incident management teams (IMTs) are responsible for managing the response to wildfires. One of the objectives of IMTs is the protection of assets and infrastructure. In this paper, we develop a mathematical model to assist IMTs in assigning resources to asset protection activities during wildfires. We present a mixed integer programming model for resource allocation with the aim of protecting the maximum possible total value of assets. The model allows for mixed vehicle types with interchangeable capabilities and with travel times determined by vehicle-specific speed and road network information. We define location-specific protection requirements in terms of vehicle capabilities. The formulated model extends classic variants of the team orienteering problem with time windows. The model capabilities are demonstrated using a hypothetical fire scenario impacting South Hobart, Tasmania, Australia. Computational testing shows that realistically sized problems can be solved within a reasonable time

    Location models in the public sector

    Get PDF
    The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.Location analysis, public facilities, covering models
    • 

    corecore