3,959 research outputs found

    Research on work zone vehicle queuing behavior based on cellular automata

    Full text link
    A model is proposed to estimate the work zone queue length, and the cellular automata based on empirical data is used for model validation. This estimation model can be applied to work zone organization and management to improve work zone capacity and security. Relationship between the average queue length and the warning zone length can be found, and the appropriate warning zone length can be determined according to design flow. Moreover, the appropriate work zone lane-changing strategies under different design flows are found through the estimation model

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Survey of detection techniques, mathematical models and simulation software in pedestrian dynamics

    Get PDF
    The study of pedestrian dynamics has become in the latest years an increasing field of research. A relevant number of technicians have been looking for improving technologies able to detect walking people in various conditions. Several researchers have dedicated their works to model walking dynamics and general laws. Many studiers have developed interesting software to simulate pedestrian behavior in all sorts of situations and environments. Nevertheless, till nowadays, no research has been carried out to analyze all the three over-mentioned aspects. The remarked lack in literature of a complete research, pointing out the fundamental features of pedestrian detection techniques, pedestrian modelling and simulation and their tight relationships, motivates the draft of this paper. Aim of the paper is, first, to provide a schematic summary of each topic. Secondly, a more detailed description of the subjects is displayed, pointing out the advantages and disadvantages of each detection technology, the working logic of each model, outlining the inputs and the provided outputs, and the main features of the simulation software. Finally, the obtained results are summarized and discussed, in order to outline the correlation among the three explained themes

    DEVELOPMENT OF A MIXED-FLOW OPTIMIZATION SYSTEM FOR EMERGENCY EVACUATION IN URBAN NETWORKS

    Get PDF
    In most metropolitan areas, an emergency evacuation may demand a potentially large number of evacuees to use transit systems or to walk over some distance to access their passenger cars. In the process of approaching designated pick-up points for evacuation, the massive number of pedestrians often incurs tremendous burden to vehicles in the roadway network. Hence, one critical issue in a multi-modal evacuation planning is the effective coordination of the vehicle and pedestrian flows by considering their complex interactions. The purpose of this research is to develop an integrated system that is capable of generating the optimal evacuation plan and reflecting the real-world network traffic conditions caused by the conflicts of these two types of flows. The first part of this research is an integer programming model designed to optimize the control plans for massive mixed pedestrian-vehicle flows within the evacuation zone. The proposed model, integrating the pedestrian and vehicle networks, can effectively account for their potential conflicts during the evacuation. The model can generate the optimal routing strategies to guide evacuees moving toward either their pick-up locations or parking areas and can also produce a responsive plan to accommodate the massive pedestrian movements. The second part of this research is a mixed-flow simulation tool that can capture the conflicts between pedestrians, between vehicles, and between pedestrians and vehicles in an evacuation network. The core logic of this simulation model is the Mixed-Cellular Automata (MCA) concept, which, with some embedded components, offers a realistic mechanism to reflect the competing and conflicting interactions between vehicle and pedestrian flows. This study is expected to yield the following contributions * Design of an effective framework for planning a multi-modal evacuation within metropolitan areas; * Development of an integrated mixed-flow optimization model that can overcome various modeling and computing difficulties in capturing the mixed-flow dynamics in urban network evacuation; * Construction and calibration of a new mixed-flow simulation model, based on the Cellular Automaton concept, to reflect various conflicting patterns between vehicle and pedestrian flows in an evacuation network
    • …
    corecore