26 research outputs found

    Design of a thermally-actuated positive-locking safety valve

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 131-135).Gas-lifted oil wells are susceptible to failure through malfunction of gas lift valves. This is a growing concern as offshore wells are drilled thousands of meters below the ocean floor in extreme temperature and pressure conditions and repair and monitoring become more difficult. Gas lift valves and oil well systems have been modeled but system failure modes are not well understood. In this thesis a quasi-steady-state fluid-mechanical model and a transient thermal model are constructed to study failure modes and sensitivities of a gas-lifted well system including the reservoir, two-phase flow within the tubing, and gas lift valve geometry. A set of three differential algebraic equations of the system is solved to determine the system state. Gas lift valve, two-phase flow, and reservoir models are validated with well and experimental data. Sensitivity analysis is performed on the model and sensitive parameters are identified. Failure modes of the system and parameter values that lead to failure modes are identified using Monte Carlo simulation. In particular, we find that the failure mode of backflow through the gas lift valve with a leaky check valve is sensitive to small variations in several design parameters. To address the failure modes studied, a positive-locking, thermally-actuated safety valve is designed to shut off flow through the gas lift valve in the event of failure. A prototype of the positive-locking valve is constructed and thermal actuation is tested.by Eric Gilbertson.S.M

    Design, development and control of a managed pressure drilling setup

    Get PDF
    Drilling in challenging conditions require precise control over hydrodynamic parameters for safer and efficient operation in oil and gas industries. Automated managed pressure drilling (MPD) is one of such drilling solution which helps to maintain operational parameters effectively over conventional drilling technique. The main goal is to maintain bottomhole pressure between reservoir formation pressure and fracture pressure with kick mitigation ability. Real life MPD system has to confront nonlinearity induced by drilling fluid rheology and flow parameters. To obtain a better understanding of this operation, a lab scale experimental setup has been developed. Reynolds number and pressure drop per unit length were considered to obtain hydrodynamic similarity. A vertical concentric pipe arrangement has been used to represent the drill string and annular casing region. A linearized gain switching proportional integral (PI) controller and a nonlinear model predictive controller (NMPC) have been developed to automate the control operation in the experimental setup. A linearizer has been designed to address the choke nonlinearity. Based on the flow and pressure criteria, a gain switching PI controller has been developed which is able to control pressure and flow conditions during pipe extension, pump failure and influx attenuation cases. On the other hand, a nonlinear Hammerstein-Weiner model has been developed which assists in bottomhole pressure estimation using pump flow rate and choke opening. The identified model has been integrated with a NMPC algorithm to achieve effective control within predefined pressure and flow constraints. Lastly, a performance comparison has been provided between the linearized gain switching PI controller and NMPC controller

    Safety and reliability assessment of managed pressure drilling in well control operations

    Get PDF
    Managed pressure drilling (MPD) is a technique utilized in drilling to manage annular pressure, hold reservoir influx, and divert mud returns away safely from the rig floor through a closed loop system. Thus, MPD plays key roles in well control operations and in drilling deepwater wells. However, despite the operational, safety, and economic benefits, limited information is available on understanding the complexity of MPD system. Furthermore, the oil and gas industry currently relies on a flow monitoring system for earlier kick detection but faces severe flaws and limited progress has been made on approach that monitors kick from downhole due to the complexity of offshore drilling operations. Thus, the main objective of this research is to assess the safety and reliability of MPD. In this research, following novel contributions have been made: several dynamic downhole drilling parameters have been identified to enhance earlier kick detection technique during drilling, including about 33 – 89% damping of bit-rock vibrations due to gas kick; a reliability assessment model has been developed to estimate the failure probability of an MPD system as 5.74%, the assess the increase in reliability of kick control operation increases from 94% to 97% due to structural modification of the MPD components, identify that MPD operational failure modes are non-sequential, and identify that an MPD control system is the most safety-critical components in an MPD system; an automated MPD control model, which implements a nonlinear model predictive controller (NMPC) and a two-phase hydraulic flow model, has been developed to perform numerical simulations of an MPD operation; and lastly, an integrated dynamic blowout risk model (DBRM) to assess the safety during an MPD operation has been developed and its operation involves three key steps: a dynamic Bayesian network (DBN) model, a numerical simulation of an MPD control operation, and dynamic risk analysis to assess the safety of the well control operation as drilling conditions change over time. The DBRM also implemented novel kick control variables to assess the success / failure of an MPD operation, i.e. its safety, and are instrumental in providing useful information to predict the performance of / diagnose the failure of an MPD operation and has been successfully applied to replicate the dynamic risk of blowout risk scenarios presented in an MPD operation at the Amberjack field case study from the Gulf of Mexico

    Fundamentals of Enhanced Oil Recovery

    Get PDF
    For many years, the trend of increasing energy demand has been visible. Despite the search for alternative energy sources, it is estimated that oil and natural gas will be the main source of energy in transport for the next several dozen years. However, the reserves of renewable raw materials are limited in volume. Along with the degree of depletion, oil recovery becomes more and more difficult, even though the deposits are not yet completely empty. Therefore, it is essential to find new methods to increase oil and gas recovery. Actions aimed at intensifying oil recovery are very rational use of energy that has not yet been fully used. Usually, an increase in oil recovery can be achieved by using extraction intensification methods. However, measures to increase oil recovery can be implemented and carried out at any stage of the borehole implementation. Starting from the well design stage, through drilling and ending with the exploitation of oil and gas. Therefore, in order to further disseminate technologies and methods related to increasing oil recovery, a special edition has been developed, entitled "Fundamentals of Enhanced Oil Recovery". This Special Issue mainly covers original research and studies on the above-mentioned topics, including, but not limited to, improving the efficiency of oil recovery, improving the correct selection of drilling fluids, secondary methods of intensifying production and appropriate energy management in the oil industry

    Volume 1 – Symposium

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group A: Materials Group B: System design & integration Group C: Novel system solutions Group D: Additive manufacturing Group E: Components Group F: Intelligent control Group G: Fluids Group H | K: Pumps Group I | L: Mobile applications Group J: Fundamental

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    Full text link

    Advanced risk and maintenance modelling in LNG carrier operations

    Get PDF
    High demand of Liquefied Natural Gas (LNG) in recent time requires LNG carriers in more frequent operations in order to meet customers' needs. To ensure that the LNG carriers are always reliable in service, it has become necessary to adopt various advanced modelling techniques such as Genetic Algorithm (GA), fuzzy logic and Evidential Reasoning (ER) for risk/safety assessment and maintenance modelling of LNG carrier operations. These advanced computational techniques can help to overcome challenges posed by uncertainties associated with the LNG carrier operations. Their usefulness is demonstrated using case studies in this research. Firstly, two major hazards of LNG carrier operations such as "failure of LNG containment system" and "LNG spill from transfer arm" are identified and estimated as high risk ones using a risk matrix technique and expert judgement. The causes (failure modeslbasic events) of these high risk hazards are analysed using a Fault Tree Analysis (FTA). The failure logics of their failure modes are established and Boolean algebra is applied to facilitate the evaluation of the failure probabilities and frequencies. Secondly, a GA model is developed to improve the safety levels of the LNG containment system and transfer arm, to minimise their maintenance costs and to realise optimal resource management. The GA is used to optimise a risk model that is developed with exponential distribution and parameters such as failure frequencies, unit costs of maintenance and new maintenance costs of the LNG containment system and transfer arm. Thirdly, the uncertainties of some parameters in the GA model such as unit costs of maintenance are subdued using the strength of Fuzzy Rule Base (FRB) in combination with GA. 125 fuzzy rules of LNG carrier system maintenance cost are developed, which makes it possible to facilitate the evaluation of maintenance cost in any specific LNG risk-based operation. The outcomes of unit costs of maintenance are used in the GA based risk model to update the optimal management of maintenance cost. Finally, the uncertainties of failure modes of the LNG containment system and transfer arm are investigated and treated based on the Formal Safety Assessment (FSA) principle using a Fuzzy ER (FER) approach. The fuzzy logic is used to estimate the safety/risk levels of those failure modes while the ER is used to synthesise them to facilitate the estimation of safety/risk levels of the top events. Risk Control Options (RCOs) are developed to manage high level risks. The costs for each of the RCOs are estimated and synthesised using ER, which facilitated the investigation of the best RCOs in risk-based decision making. There is no doubt that the methodologies proposed possess significant potential for use in improving safety and maintenance of LNG carrier operations based on the verifications of their corresponding test cases. Accordingly, the developed models can be integrated to formulate a platform to facilitate risk assessment and maintenance management of LNG carrier systems in situations where traditional techniques cannot be applied with confidence
    corecore