18 research outputs found

    A review of optimization approaches for controlling water-cooled central cooling systems

    Get PDF
    Buildings consume a large amount of energy across all sectors of society, and a large proportion of building energy is used by HVAC systems to provide a comfortable and healthy indoor environment. In medium and large-size buildings, the central cooling system accounts for a major share of the energy consumption of the HVAC system. Improving the cooling system efficiency has gained much attention as the reduction of cooling system energy use can effectively contribute to environmental sustainability. The control and operation play an important role in central cooling system energy efficiency under dynamic working conditions. It has been proven that optimization of the control of the central cooling system can notably reduce the energy consumption of the system and mitigate greenhouse gas emissions. In recent years, numerous studies focus on this topic to improve the performance of optimal control in different aspects (e.g., energy efficiency, stability, robustness, and computation efficiency). This paper provides an up-to-date overview of the research and development of optimization approaches for controlling water-cooled central cooling systems, helping readers to understand the new significant trends and achievements in this area. The optimization approaches have been classified as system-model-based and data-based. In this paper, the optimization methodology is introduced first by summarizing the key decision variables, objective function, constraints, and optimization algorithms. The principle and performance of various optimization approaches are then summarized and compared according to their classification. Finally, the challenges and development trends for optimal control of water-cooled central cooling systems are discussed

    Data Driven Chiller Plant Energy Optimization with Domain Knowledge

    Full text link
    Refrigeration and chiller optimization is an important and well studied topic in mechanical engineering, mostly taking advantage of physical models, designed on top of over-simplified assumptions, over the equipments. Conventional optimization techniques using physical models make decisions of online parameter tuning, based on very limited information of hardware specifications and external conditions, e.g., outdoor weather. In recent years, new generation of sensors is becoming essential part of new chiller plants, for the first time allowing the system administrators to continuously monitor the running status of all equipments in a timely and accurate way. The explosive growth of data flowing to databases, driven by the increasing analytical power by machine learning and data mining, unveils new possibilities of data-driven approaches for real-time chiller plant optimization. This paper presents our research and industrial experience on the adoption of data models and optimizations on chiller plant and discusses the lessons learnt from our practice on real world plants. Instead of employing complex machine learning models, we emphasize the incorporation of appropriate domain knowledge into data analysis tools, which turns out to be the key performance improver over state-of-the-art deep learning techniques by a significant margin. Our empirical evaluation on a real world chiller plant achieves savings by more than 7% on daily power consumption.Comment: CIKM2017. Proceedings of the 26th ACM International Conference on Information and Knowledge Management. 201

    LCCC Workshop on Process Control

    Get PDF

    Low delta-T syndrome in cooling systems:A systematic review of the signs, symptoms, and causes

    Get PDF
    Return water temperature and flow rate are indicators of the energy efficiency of chilled water systems. Since the late 1980s, the return water temperature has deviated from the designed value, resulting in an increased flow rate. Such deviations have been recognized as a persistent ‘disease’ named low delta-T syndrome. Based on a medical approach, this study aimed to categorise the key signs and symptoms, and causes to classify low delta-T syndrome into subclasses with individual properties; to connect individual causes to the subclasses; and to identify disagreements on individual causes. Through a systematic review of the literature, over 190 papers published since the late 1980s were identified and studied. By combining different return water temperature profiles and flow rates, low delta-T syndrome was classified into four subclasses with severities ranging from 1 (mild) to 4 (extreme). These subclasses were described with 12 signs and symptoms, each characterised by 19 (from a total of 52) individual or combined causes, to provide an improved overview and a fundamental basis for developing treatments. A fundamental analysis of low delta-T syndrome on a cooling coil revealed that cooling coils with a high chilled water temperature difference and a high chilled water supply temperature at design conditions have a higher risk of developing it. This literature review provides an improved understanding of as well as considerations regarding how to prevent, resolve, mitigate, and handle low delta-T syndrome during design and operation

    Advanced energy management strategies for HVAC systems in smart buildings

    Get PDF
    The efficacy of the energy management systems at dealing with energy consumption in buildings has been a topic with a growing interest in recent years due to the ever-increasing global energy demand and the large percentage of energy being currently used by buildings. The scale of this sector has attracted research effort with the objective of uncovering potential improvement avenues and materializing them with the help of recent technological advances that could be exploited to lower the energetic footprint of buildings. Specifically, in the area of heating, ventilating and air conditioning installations, the availability of large amounts of historical data in building management software suites makes possible the study of how resource-efficient these systems really are when entrusted with ensuring occupant comfort. Actually, recent reports have shown that there is a gap between the ideal operating performance and the performance achieved in practice. Accordingly, this thesis considers the research of novel energy management strategies for heating, ventilating and air conditioning installations in buildings, aimed at narrowing the performance gap by employing data-driven methods to increase their context awareness, allowing management systems to steer the operation towards higher efficiency. This includes the advancement of modeling methodologies capable of extracting actionable knowledge from historical building behavior databases, through load forecasting and equipment operational performance estimation supporting the identification of a building’s context and energetic needs, and the development of a generalizable multi-objective optimization strategy aimed at meeting these needs while minimizing the consumption of energy. The experimental results obtained from the implementation of the developed methodologies show a significant potential for increasing energy efficiency of heating, ventilating and air conditioning systems while being sufficiently generic to support their usage in different installations having diverse equipment. In conclusion, a complete analysis and actuation framework was developed, implemented and validated by means of an experimental database acquired from a pilot plant during the research period of this thesis. The obtained results demonstrate the efficacy of the proposed standalone contributions, and as a whole represent a suitable solution for helping to increase the performance of heating, ventilating and air conditioning installations without affecting the comfort of their occupants.L’eficàcia dels sistemes de gestió d’energia per afrontar el consum d’energia en edificis és un tema que ha rebut un interès en augment durant els darrers anys a causa de la creixent demanda global d’energia i del gran percentatge d’energia que n’utilitzen actualment els edificis. L’escala d’aquest sector ha atret l'atenció de nombrosa investigació amb l’objectiu de descobrir possibles vies de millora i materialitzar-les amb l’ajuda de recents avenços tecnològics que es podrien aprofitar per disminuir les necessitats energètiques dels edificis. Concretament, en l’àrea d’instal·lacions de calefacció, ventilació i climatització, la disponibilitat de grans bases de dades històriques als sistemes de gestió d’edificis fa possible l’estudi de com d'eficients són realment aquests sistemes quan s’encarreguen d'assegurar el confort dels seus ocupants. En realitat, informes recents indiquen que hi ha una diferència entre el rendiment operatiu ideal i el rendiment generalment assolit a la pràctica. En conseqüència, aquesta tesi considera la investigació de noves estratègies de gestió de l’energia per a instal·lacions de calefacció, ventilació i climatització en edificis, destinades a reduir la diferència de rendiment mitjançant l’ús de mètodes basats en dades per tal d'augmentar el seu coneixement contextual, permetent als sistemes de gestió dirigir l’operació cap a zones de treball amb un rendiment superior. Això inclou tant l’avanç de metodologies de modelat capaces d’extreure coneixement de bases de dades de comportaments històrics d’edificis a través de la previsió de càrregues de consum i l’estimació del rendiment operatiu dels equips que recolzin la identificació del context operatiu i de les necessitats energètiques d’un edifici, tant com del desenvolupament d’una estratègia d’optimització multi-objectiu generalitzable per tal de minimitzar el consum d’energia mentre es satisfan aquestes necessitats energètiques. Els resultats experimentals obtinguts a partir de la implementació de les metodologies desenvolupades mostren un potencial important per augmentar l'eficiència energètica dels sistemes de climatització, mentre que són prou genèrics com per permetre el seu ús en diferents instal·lacions i suportant equips diversos. En conclusió, durant aquesta tesi es va desenvolupar, implementar i validar un marc d’anàlisi i actuació complet mitjançant una base de dades experimental adquirida en una planta pilot durant el període d’investigació de la tesi. Els resultats obtinguts demostren l’eficàcia de les contribucions de manera individual i, en conjunt, representen una solució idònia per ajudar a augmentar el rendiment de les instal·lacions de climatització sense afectar el confort dels seus ocupantsPostprint (published version

    Advanced energy management strategies for HVAC systems in smart buildings

    Get PDF
    The efficacy of the energy management systems at dealing with energy consumption in buildings has been a topic with a growing interest in recent years due to the ever-increasing global energy demand and the large percentage of energy being currently used by buildings. The scale of this sector has attracted research effort with the objective of uncovering potential improvement avenues and materializing them with the help of recent technological advances that could be exploited to lower the energetic footprint of buildings. Specifically, in the area of heating, ventilating and air conditioning installations, the availability of large amounts of historical data in building management software suites makes possible the study of how resource-efficient these systems really are when entrusted with ensuring occupant comfort. Actually, recent reports have shown that there is a gap between the ideal operating performance and the performance achieved in practice. Accordingly, this thesis considers the research of novel energy management strategies for heating, ventilating and air conditioning installations in buildings, aimed at narrowing the performance gap by employing data-driven methods to increase their context awareness, allowing management systems to steer the operation towards higher efficiency. This includes the advancement of modeling methodologies capable of extracting actionable knowledge from historical building behavior databases, through load forecasting and equipment operational performance estimation supporting the identification of a building’s context and energetic needs, and the development of a generalizable multi-objective optimization strategy aimed at meeting these needs while minimizing the consumption of energy. The experimental results obtained from the implementation of the developed methodologies show a significant potential for increasing energy efficiency of heating, ventilating and air conditioning systems while being sufficiently generic to support their usage in different installations having diverse equipment. In conclusion, a complete analysis and actuation framework was developed, implemented and validated by means of an experimental database acquired from a pilot plant during the research period of this thesis. The obtained results demonstrate the efficacy of the proposed standalone contributions, and as a whole represent a suitable solution for helping to increase the performance of heating, ventilating and air conditioning installations without affecting the comfort of their occupants.L’eficàcia dels sistemes de gestió d’energia per afrontar el consum d’energia en edificis és un tema que ha rebut un interès en augment durant els darrers anys a causa de la creixent demanda global d’energia i del gran percentatge d’energia que n’utilitzen actualment els edificis. L’escala d’aquest sector ha atret l'atenció de nombrosa investigació amb l’objectiu de descobrir possibles vies de millora i materialitzar-les amb l’ajuda de recents avenços tecnològics que es podrien aprofitar per disminuir les necessitats energètiques dels edificis. Concretament, en l’àrea d’instal·lacions de calefacció, ventilació i climatització, la disponibilitat de grans bases de dades històriques als sistemes de gestió d’edificis fa possible l’estudi de com d'eficients són realment aquests sistemes quan s’encarreguen d'assegurar el confort dels seus ocupants. En realitat, informes recents indiquen que hi ha una diferència entre el rendiment operatiu ideal i el rendiment generalment assolit a la pràctica. En conseqüència, aquesta tesi considera la investigació de noves estratègies de gestió de l’energia per a instal·lacions de calefacció, ventilació i climatització en edificis, destinades a reduir la diferència de rendiment mitjançant l’ús de mètodes basats en dades per tal d'augmentar el seu coneixement contextual, permetent als sistemes de gestió dirigir l’operació cap a zones de treball amb un rendiment superior. Això inclou tant l’avanç de metodologies de modelat capaces d’extreure coneixement de bases de dades de comportaments històrics d’edificis a través de la previsió de càrregues de consum i l’estimació del rendiment operatiu dels equips que recolzin la identificació del context operatiu i de les necessitats energètiques d’un edifici, tant com del desenvolupament d’una estratègia d’optimització multi-objectiu generalitzable per tal de minimitzar el consum d’energia mentre es satisfan aquestes necessitats energètiques. Els resultats experimentals obtinguts a partir de la implementació de les metodologies desenvolupades mostren un potencial important per augmentar l'eficiència energètica dels sistemes de climatització, mentre que són prou genèrics com per permetre el seu ús en diferents instal·lacions i suportant equips diversos. En conclusió, durant aquesta tesi es va desenvolupar, implementar i validar un marc d’anàlisi i actuació complet mitjançant una base de dades experimental adquirida en una planta pilot durant el període d’investigació de la tesi. Els resultats obtinguts demostren l’eficàcia de les contribucions de manera individual i, en conjunt, representen una solució idònia per ajudar a augmentar el rendiment de les instal·lacions de climatització sense afectar el confort dels seus ocupant

    Research and Technology, 1998

    Get PDF
    This report selectively summarizes the NASA Lewis Research Center's research and technology accomplishments for the fiscal year 1998. It comprises 134 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to he a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Lewis-published technical reports, journal articles, and presentations prepared by Lewis staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Lewis contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. At the time of publication, NASA Lewis was undergoing a name change to the NASA John H. Glenn Research Center at Lewis Field
    corecore