114 research outputs found

    Modeling and analysis to improve the quality of healthcare services

    Get PDF
    For many healthcare services or medical procedures, patients have extensive risk of complication or face death when treatment is delayed. When a queue is formed in such a situation, it is very important to assess the suffering and risk faced by patients in queue and plan sufficient medical capabilities in advance to address the concerns. As the diversity of care settings increases, congestion in facilities causes many patients to unnecessarily spend extra days in intensive care facilities. Performance evaluation of current healthcare service systems using queueing theory gains more and more importance because of patient flows and systems complexity. Queueing models have been used in handsome number of healthcare studies, but the incorporation of blocking is still limited. In this research work, we study an efficient two-stage multi-class queueing network system with blocking and phase-type service time distribution to analyze such congestion processes. We also consider parallel servers at each station and first-come-first-serve non-preemptive service discipline are used to improve the performance of healthcare service systems

    Performance and economic evaluation of differentiated multiple vacation queueing system with feedback and balked customers

    Get PDF
    The present paper deals with a single server feedback queueing system under two differentiated multiple vacations and balked customers. It is assumed that the service times of the two vacation types are exponentially distributed with different means. The steady-state probabilities of the model are obtained. Some important performance measures of the system are derived. Then, a cost model is developed. Further, a numerical study is presented

    Strategic queueing behavior for individual and social optimization in managing discrete time working vacation queue with Bernoulli interruption schedule

    Get PDF
    In this paper, we consider a discrete time working vacation queue with a utility function for the reward of receiving the service and the cost of waiting in the system. A more flexible switching mechanism between low and regular service states is introduced to enhance the practical value of the working vacation queue. Under different precision levels of the system information, namely observable, almost unobservable and fully unobservable cases, the utility function is studied from both the individual customer’s and the system administrator’s points of view. By analyzing the steady-state behavior of the system, the associated optimal joining decisions under different information scenarios are obtained. We find that for the fully observable queue, the joining threshold for individual optimization may be less than the one for social optimization in working vacation period. A similar situation also appears in almost unobservable case. Such phenomenon is not possible for the classic first come first served queue due to the fact that there is no vacation time and thus will not cause large fluctuations in customers’ conditional waiting time. Additionally, we also conduct some numerical comparisons to demonstrate the effect of the information levels as well as system parameters on customer joining behavior.This research was partially supported by grant from NSERC DAS programs, National Natural Science Foundation of China (Nos.71301111, 71571127, 71402072) and the FSUSE (No.2012RC23).http://www.elsevier.com/locate/caor2017-09-30hb2016Electrical, Electronic and Computer Engineerin

    Mathematical Analysis of Queue with Phase Service: An Overview

    Get PDF
    We discuss various aspects of phase service queueing models. A large number of models have been developed in the area of queueing theory incorporating the concept of phase service. These phase service queueing models have been investigated for resolving the congestion problems of many day-to-day as well as industrial scenarios. In this survey paper, an attempt has been made to review the work done by the prominent researchers on the phase service queues and their applications in several realistic queueing situations. The methodology used by several researchers for solving various phase service queueing models has also been described. We have classified the related literature based on modeling and methodological concepts. The main objective of present paper is to provide relevant information to the system analysts, managers, and industry people who are interested in using queueing theory to model congestion problems wherein the phase type services are prevalent

    Sharing delay information in service systems: a literature survey

    Get PDF
    Service providers routinely share information about upcoming waiting times with their customers, through delay announcements. The need to effectively manage the provision of these announcements has led to a substantial growth in the body of literature which is devoted to that topic. In this survey paper, we systematically review the relevant literature, summarize some of its key ideas and findings, describe the main challenges that the different approaches to the problem entail, and formulate research directions that would be interesting to consider in future work

    Performance improvement of remanufacturing systems operating under N-policy

    Get PDF
    This thesis deals with N-policy M/G/1 queueing remanufacturing system with general server breakdown and start-up time, where the value of returned products exponentially deteriorates since received. The server will instantly turn on the system, but the system requires a start-up period to prepare for remanufacturing when returned products in the queue reach the value of N. Otherwise, the system keeps in turn-off status. During the remanufacturing process, the machines may break down and will return back to service immediately after repairing. The procedures that will be used to achieve the target are as follows. Firstly, the expression of cost function will be derived and solved. Next, the simulation software ProModel will be used to simulate this problem. Finally, a sensitivity analysis is used on a numerical example to show the applicability of the methodology and quality of results

    Some analysis results associated with the optimization problem for a discrete-time finite-buffer NT-policy queue

    Get PDF
    The prime objective of this paperis to give some analysis results concerning the discrete-time finite-buffer NT-policy queue, which can be utilized to determine the optimal threshold values. By recording the waiting time of the leading customer in server’s vacation period, the model is successfully described as a vector-valued Markov chain. Meanwhile, depending on the special block structure of the one-step transition probability matrix, the equilibrium queue length distribution is calculated through a more effective UL-type RG-factorization. Due to the number of customers served in the busy period does not have the structure of a Galton-Watson branching process, analysis of the regeneration cycle is regarded as a difficult problem in establishing the cost structure of the queueing system. However, employing the concept of i-busy period and some difference equation solving skills, the explicit expression for the expected length of the regeneration cycle is easily derived, and the stochastic decomposition structure of the busy period is also demonstrated. Finally, numerical results are offered to illustrate how the direct search method can be implemented to obtain the optimal management policy.This research was partially supported by grant from NSERC DAS programs, National Natural Science Foundation of China (Nos. 71301111,71171138, 71402072) and the FSUSE (No.2012RC23).http://link.springer.com/journal/123512017-07-30hb201

    A multiple channel queueing model under an uncertain environment with multiclass arrivals for supplying demands in a cement industry

    Get PDF
    In recent years, cement consumption has increased in most Asian countries, including Malaysia. There are many factors which affect the supply of the increasing order demands in the cement industry, such as traffic congestion, logistics, weather and machine breakdowns. These factors hinder smooth and efficient supply, especially during periods of peak congestion at the main gate of the industry where queues occur as a result of inability to keep to the order deadlines. Basic elements, such as arrival and service rates, that cannot be predetermined must be considered under an uncertain environment. Solution approaches including conventional queueing techniques, scheduling models and simulations were unable to formulate the performance measures of the cement queueing system. Hence, a new procedure of fuzzy subset intervals is designed and embedded in a queuing model with the consideration of arrival and service rates. As a result, a multiple channel queueing model with multiclass arrivals, (M1, M2)/G/C/2Pr, under an uncertain environment is developed. The model is able to estimate the performance measures of arrival rates of bulk products for Class One and bag products for Class Two in the cement manufacturing queueing system. For the (M1, M2)/G/C/2Pr fuzzy queueing model, two defuzzification techniques, namely the Parametric Nonlinear Programming and Robust Ranking are used to convert fuzzy queues into crisp queues. This led to three proposed sub-models, which are sub-model 1, MCFQ-2Pr, sub-model 2, MCCQESR-2Pr and sub-model 3, MCCQ-GSR-2Pr. These models provide optimal crisp values for the performance measures. To estimate the performance of the whole system, an additional step is introduced through the TrMF-UF model utilizing a utility factor based on fuzzy subset intervals and the α-cut approach. Consequently, these models help decision-makers deal with order demands under an uncertain environment for the cement manufacturing industry and address the increasing quantities needed in future
    • …
    corecore