25 research outputs found

    Digital assistance design for analog systems : digital baseband for outphasing power amplifiers

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 145-150).Digital assistance is among many aspects that can be leveraged to help analog/mixed-signal designers keep up with the technology scaling. It usually takes the form of predistorter or compensator in an analog/mixed-signal system and helps compensate the nonidealities in the system. Digital assistance takes advantage of the process scaling with faster speed and a higher level of integration. When a digital system is co-optimized with system modeling techniques, digital assistance usually becomes a key enabling block for the high performance of the overall system. This thesis presents the design of digital assistances through the digital baseband design for outphasing power amplifiers. In the digital baseband design, this thesis conveys two major points: the importance of the use of the reduced-complexity system modeling techniques, and the communications between hardware design and system modeling. These points greatly help the success in the design of the energy-efficient baseband. The first part of the baseband design is to realize the nonlinear signal processing unit required by the modulation scheme. Conventional approaches of implementing this functionality do not scale well to meet the throughput, area and energy-efficiency targets. We propose a novel fixed-point piece-wise linear approximation technique for the nonlinear function computations involved in the signal processing unit. The new technique allows us to achieve an energy and area-efficient design with a throughput of 3.4Gsamples/s. Compared to the projected previous designs, our design shows 2x improvement in energy-efficiency and 25x in area-efficiency. The second part of the baseband design devotes to the nonlinear compensator design, aiming to improve the linearity performance of the outphasing power amplifier. We first explore the feasibility of a working compensator by use of an off-line iterative solving scheme. With the confirmation that a compensator does exist, we analyze the structure of the nonlinear baseband-equivalent PA system and create a dynamical real-time compensator model. The resulting compensator provides the overall PA system with around 10dB improvement in ACPR and up to 2.5% in EVM.by Yan Li.Ph.D

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    Novel load identification techniques and a steady state self-tuning prototype for switching mode power supplies

    Get PDF
    Control of Switched Mode Power Supplies (SMPS) has been traditionally achieved through analog means with dedicated integrated circuits (ICs). However, as power systems are becoming increasingly complex, the classical concept of control has gradually evolved into the more general problem of power management, demanding functionalities that are hardly achievable in analog controllers. The high flexibility offered by digital controllers and their capability to implement sophisticated control strategies, together with the programmability of controller parameters, make digital control very attractive as an option for improving the features of dcdc converters. On the other side, digital controllers find their major weak point in the achievable dynamic performances of the closed loop system. Indeed, analogto-digital conversion times, computational delays and sampling-related delays strongly limit the small signal closed loop bandwidth of a digitally controlled SMPS. Quantization effects set other severe constraints not known to analog solutions. For these reasons, intensive scientific research activity is addressing the problem of making digital compensator stronger competitors against their analog counterparts in terms of achievable performances. In a wide range of applications, dcdc converters with high efficiency over the whole range of their load values are required. Integrated digital controllers for Switching Mode Power Supplies are gaining growing interest, since it has been shown the feasibility of digital controller ICs specifically developed for high frequency switching converters. One very interesting potential benefit is the use of autotuning of controller parameters (on-line controllers), so that the dynamic response can be set at the software level, independently of output capacitor filters, component variations and ageing. These kind of algorithms are able to identify the output filter configuration (system identification) and then automatically compute the best compensator gains to adjust system margins and bandwidth. In order to be an interesting solution, however, the self-tuning should satisfy two important requirements: it should not heavily affect converter operation under nominal condition and it should be based on a simple and robust algorithm whose complexity does not require a significant increase of the silicon area of the IC controller. The first issue is avoided performing the system identification (SI) with the system open loop configuration, where perturbations can be induced in the system before the start up. Much more challenging is to satisfy this requirement during steady state operations, where perturbations on the output voltage are limited by the regular operations of the converter. The main advantage of steady state SI methods, is the detection of possible non-idealities occurring during the converter operations. In this way, the system dynamics can be consequently adjusted with the compensator parameters tuning. The resource saving issue, requires the development of äd-hocßelf-tuning techniques specifically tailored for integrated digitally controlled converters. Considering the flexibility of digital control, self-tuning algorithms can be studied and easily integrated at hardware level into closed loop SMPS reducing development time and R & D costs. The work of this dissertation finds its origin in this context. Smart power management is accomplished by tuning the controller parameters accordingly to the identified converter configuration. Themain difficult for self-tuning techniques is the identification of the converter output filter configuration. Two novel system identification techniques have been validated in this dissertation. The open loop SI method is based on the system step response, while dithering amplification effects are exploited for the steady state SI method. The open loop method can be used as autotunig approach during or before the system start up, a step evolving reference voltage has been used as system perturbation and to obtain the output filter information with the Power Spectral Density (PSD) computation of the system step response. The use of ¢§ modulator is largely increasing in digital control feedback. During the steady state, the finite resolution introduces quantization effects on the signal path causing low frequency contributes of the digital control word. Through oversampling-dithering capabilities of ¢§ modulators, resolution improvements are obtained. The presented steady state identification techniques demonstrates that, amplifying the dithering effects on the signal path, the output filter information can be obtained on the digital side by processing with the PSD computation the perturbed output voltage. The amount of noise added on the output voltage does not affect the converter operations, mathematical considerations have been addressed and then justified both with a Matlab/Simulink fixed-point and a FPGA-based closed loop system. The load output filter identification of both algorithms, refer to the frequency domain. When the respective perturbations occurs, the system response is observed on the digital side and processed with the PSD computation. The extracted parameters are the resonant frequency ans the possible ESR (Effective Series Resistance) contributes,which can be detected as maximumin the PSD output. The SI methods have been validated for different configurations of buck converters on a fixed-point closed loop model, however, they can be easily applied to further converter configurations. The steady state method has been successfully integrated into a FPGA-based prototype for digitally controlled buck converters, that integrates a PSD computer needed for the load parameters identification. At this purpose, a novel VHDL-coded full-scalable hybrid processor for Constant Geometry FFT (CG-FFT) computation has been designed and integrated into the PSD computation system. The processor is based on a variation of the conventional algorithm used for FFT, which is the Constant-Geometry FFT (CG-FFT).Hybrid CORDIC-LUT scalable architectures, has been introduced as alternative approach for the twiddle factors (phase factors) computation needed during the FFT algorithms execution. The shared core architecture uses a single phase rotator to satisfy all TF requests. It can achieve improved logic saving by trading off with computational speed. The pipelined architecture is composed of a number of stages equal to the number of PEs and achieves the highest possible throughput, at the expense of more hardware usage

    Novel load identification techniques and a steady state self-tuning prototype for switching mode power supplies

    Get PDF
    Control of Switched Mode Power Supplies (SMPS) has been traditionally achieved through analog means with dedicated integrated circuits (ICs). However, as power systems are becoming increasingly complex, the classical concept of control has gradually evolved into the more general problem of power management, demanding functionalities that are hardly achievable in analog controllers. The high flexibility offered by digital controllers and their capability to implement sophisticated control strategies, together with the programmability of controller parameters, make digital control very attractive as an option for improving the features of dcdc converters. On the other side, digital controllers find their major weak point in the achievable dynamic performances of the closed loop system. Indeed, analogto-digital conversion times, computational delays and sampling-related delays strongly limit the small signal closed loop bandwidth of a digitally controlled SMPS. Quantization effects set other severe constraints not known to analog solutions. For these reasons, intensive scientific research activity is addressing the problem of making digital compensator stronger competitors against their analog counterparts in terms of achievable performances. In a wide range of applications, dcdc converters with high efficiency over the whole range of their load values are required. Integrated digital controllers for Switching Mode Power Supplies are gaining growing interest, since it has been shown the feasibility of digital controller ICs specifically developed for high frequency switching converters. One very interesting potential benefit is the use of autotuning of controller parameters (on-line controllers), so that the dynamic response can be set at the software level, independently of output capacitor filters, component variations and ageing. These kind of algorithms are able to identify the output filter configuration (system identification) and then automatically compute the best compensator gains to adjust system margins and bandwidth. In order to be an interesting solution, however, the self-tuning should satisfy two important requirements: it should not heavily affect converter operation under nominal condition and it should be based on a simple and robust algorithm whose complexity does not require a significant increase of the silicon area of the IC controller. The first issue is avoided performing the system identification (SI) with the system open loop configuration, where perturbations can be induced in the system before the start up. Much more challenging is to satisfy this requirement during steady state operations, where perturbations on the output voltage are limited by the regular operations of the converter. The main advantage of steady state SI methods, is the detection of possible non-idealities occurring during the converter operations. In this way, the system dynamics can be consequently adjusted with the compensator parameters tuning. The resource saving issue, requires the development of äd-hocßelf-tuning techniques specifically tailored for integrated digitally controlled converters. Considering the flexibility of digital control, self-tuning algorithms can be studied and easily integrated at hardware level into closed loop SMPS reducing development time and R & D costs. The work of this dissertation finds its origin in this context. Smart power management is accomplished by tuning the controller parameters accordingly to the identified converter configuration. Themain difficult for self-tuning techniques is the identification of the converter output filter configuration. Two novel system identification techniques have been validated in this dissertation. The open loop SI method is based on the system step response, while dithering amplification effects are exploited for the steady state SI method. The open loop method can be used as autotunig approach during or before the system start up, a step evolving reference voltage has been used as system perturbation and to obtain the output filter information with the Power Spectral Density (PSD) computation of the system step response. The use of ¢§ modulator is largely increasing in digital control feedback. During the steady state, the finite resolution introduces quantization effects on the signal path causing low frequency contributes of the digital control word. Through oversampling-dithering capabilities of ¢§ modulators, resolution improvements are obtained. The presented steady state identification techniques demonstrates that, amplifying the dithering effects on the signal path, the output filter information can be obtained on the digital side by processing with the PSD computation the perturbed output voltage. The amount of noise added on the output voltage does not affect the converter operations, mathematical considerations have been addressed and then justified both with a Matlab/Simulink fixed-point and a FPGA-based closed loop system. The load output filter identification of both algorithms, refer to the frequency domain. When the respective perturbations occurs, the system response is observed on the digital side and processed with the PSD computation. The extracted parameters are the resonant frequency ans the possible ESR (Effective Series Resistance) contributes,which can be detected as maximumin the PSD output. The SI methods have been validated for different configurations of buck converters on a fixed-point closed loop model, however, they can be easily applied to further converter configurations. The steady state method has been successfully integrated into a FPGA-based prototype for digitally controlled buck converters, that integrates a PSD computer needed for the load parameters identification. At this purpose, a novel VHDL-coded full-scalable hybrid processor for Constant Geometry FFT (CG-FFT) computation has been designed and integrated into the PSD computation system. The processor is based on a variation of the conventional algorithm used for FFT, which is the Constant-Geometry FFT (CG-FFT).Hybrid CORDIC-LUT scalable architectures, has been introduced as alternative approach for the twiddle factors (phase factors) computation needed during the FFT algorithms execution. The shared core architecture uses a single phase rotator to satisfy all TF requests. It can achieve improved logic saving by trading off with computational speed. The pipelined architecture is composed of a number of stages equal to the number of PEs and achieves the highest possible throughput, at the expense of more hardware usage

    An efficient implementation of lattice-ladder multilayer perceptrons in field programmable gate arrays

    Get PDF
    The implementation efficiency of electronic systems is a combination of conflicting requirements, as increasing volumes of computations, accelerating the exchange of data, at the same time increasing energy consumption forcing the researchers not only to optimize the algorithm, but also to quickly implement in a specialized hardware. Therefore in this work, the problem of efficient and straightforward implementation of operating in a real-time electronic intelligent systems on field-programmable gate array (FPGA) is tackled. The object of research is specialized FPGA intellectual property (IP) cores that operate in a real-time. In the thesis the following main aspects of the research object are investigated: implementation criteria and techniques. The aim of the thesis is to optimize the FPGA implementation process of selected class dynamic artificial neural networks. In order to solve stated problem and reach the goal following main tasks of the thesis are formulated: rationalize the selection of a class of Lattice-Ladder Multi-Layer Perceptron (LLMLP) and its electronic intelligent system test-bed – a speaker dependent Lithuanian speech recognizer, to be created and investigated; develop dedicated technique for implementation of LLMLP class on FPGA that is based on specialized efficiency criteria for a circuitry synthesis; develop and experimentally affirm the efficiency of optimized FPGA IP cores used in Lithuanian speech recognizer. The dissertation contains: introduction, four chapters and general conclusions. The first chapter reveals the fundamental knowledge on computer-aideddesign, artificial neural networks and speech recognition implementation on FPGA. In the second chapter the efficiency criteria and technique of LLMLP IP cores implementation are proposed in order to make multi-objective optimization of throughput, LLMLP complexity and resource utilization. The data flow graphs are applied for optimization of LLMLP computations. The optimized neuron processing element is proposed. The IP cores for features extraction and comparison are developed for Lithuanian speech recognizer and analyzed in third chapter. The fourth chapter is devoted for experimental verification of developed numerous LLMLP IP cores. The experiments of isolated word recognition accuracy and speed for different speakers, signal to noise ratios, features extraction and accelerated comparison methods were performed. The main results of the thesis were published in 12 scientific publications: eight of them were printed in peer-reviewed scientific journals, four of them in a Thomson Reuters Web of Science database, four articles – in conference proceedings. The results were presented in 17 scientific conferences

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog

    ENABLING HARDWARE TECHNOLOGIES FOR AUTONOMY IN TINY ROBOTS: CONTROL, INTEGRATION, ACTUATION

    Get PDF
    The last two decades have seen many exciting examples of tiny robots from a few cm3 to less than one cm3. Although individually limited, a large group of these robots has the potential to work cooperatively and accomplish complex tasks. Two examples from nature that exhibit this type of cooperation are ant and bee colonies. They have the potential to assist in applications like search and rescue, military scouting, infrastructure and equipment monitoring, nano-manufacture, and possibly medicine. Most of these applications require the high level of autonomy that has been demonstrated by large robotic platforms, such as the iRobot and Honda ASIMO. However, when robot size shrinks down, current approaches to achieve the necessary functions are no longer valid. This work focused on challenges associated with the electronics and fabrication. We addressed three major technical hurdles inherent to current approaches: 1) difficulty of compact integration; 2) need for real-time and power-efficient computations; 3) unavailability of commercial tiny actuators and motion mechanisms. The aim of this work was to provide enabling hardware technologies to achieve autonomy in tiny robots. We proposed a decentralized application-specific integrated circuit (ASIC) where each component is responsible for its own operation and autonomy to the greatest extent possible. The ASIC consists of electronics modules for the fundamental functions required to fulfill the desired autonomy: actuation, control, power supply, and sensing. The actuators and mechanisms could potentially be post-fabricated on the ASIC directly. This design makes for a modular architecture. The following components were shown to work in physical implementations or simulations: 1) a tunable motion controller for ultralow frequency actuation; 2) a nonvolatile memory and programming circuit to achieve automatic and one-time programming; 3) a high-voltage circuit with the highest reported breakdown voltage in standard 0.5 μm CMOS; 4) thermal actuators fabricated using CMOS compatible process; 5) a low-power mixed-signal computational architecture for robotic dynamics simulator; 6) a frequency-boost technique to achieve low jitter in ring oscillators. These contributions will be generally enabling for other systems with strict size and power constraints such as wireless sensor nodes

    Modulation, Coding, and Receiver Design for Gigabit mmWave Communication

    Get PDF
    While wireless communication has become an ubiquitous part of our daily life and the world around us, it has not been able yet to deliver the multi-gigabit throughput required for applications like high-definition video transmission or cellular backhaul communication. The throughput limitation of current wireless systems is mainly the result of a shortage of spectrum and the problem of congestion. Recent advancements in circuit design allow the realization of analog frontends for mmWave frequencies between 30GHz and 300GHz, making abundant unused spectrum accessible. However, the transition to mmWave carrier frequencies and GHz bandwidths comes with new challenges for wireless receiver design. Large variations of the channel conditions and high symbol rates require flexible but power-efficient receiver designs. This thesis investigates receiver algorithms and architectures that enable multi-gigabit mmWave communication. Using a system-level approach, the design options between low-power time-domain and power-hungry frequency-domain signal processing are explored. The system discussion is started with an analysis of the problem of parameter synchronization in mmWave systems and its impact on system design. The proposed synchronization architecture extends known synchronization techniques to provide greater flexibility regarding the operating environments and for system efficiency optimization. For frequency-selective environments, versatile single-carrier frequency domain equalization (SC-FDE) offers not only excellent channel equalization, but also the possibility to integrate additional baseband tasks without overhead. Hence, the high initial complexity of SC-FDE needs to be put in perspective to the complexity savings in the other parts of the baseband. Furthermore, an extension to the SC-FDE architecture is proposed that allows an adaptation of the equalization complexity by switching between a cyclic-prefix mode and a reduced block length overlap-save mode based on the delay spread. Approaching the problem of complexity adaptation from time-domain, a high-speed hardware architecture for the delayed decision feedback sequence estimation (DDFSE) algorithm is presented. DDFSE uses decision feedback to reduce the complexity of the sequence estimation and allows to set the system performance between the performance of full maximum-likelihood detection and pure decision feedback equalization. An implementation of the DDFSE architecture is demonstrated as part of an all-digital IEEE802.11ad baseband ASIC manufactured in 40nm CMOS. A flexible architecture for wideband mmWave receivers based on complex sub-sampling is presented. Complex sub-sampling combines the design advantages of sub-sampling receivers with the flexibility of direct-conversion receivers using a single passive component and a digital compensation scheme. Feasibility of the architecture is proven with a 16Gb/s hardware demonstrator. The demonstrator is used to explore the potential gain of non-equidistant constellations for high-throughput mmWave links. Specifically crafted amplitude phase-shift keying (APSK) modulation achieve 1dB average mutual information (AMI) advantage over quadrature amplitude modulation (QAM) in simulation and on the testbed hardware. The AMI advantage of APSK can be leveraged for a practical transmission using Polar codes which are trained specifically for the constellation

    Design of a Real-Time Embedded Control System for Quantum Computing Experiments

    Get PDF
    This thesis describes the design of a real-time control system for trapped ion quantum computer experiments. It is framed in the context of the QuantumIon project, a project at the University of Waterloo’s Institute for Quantum Computing that aims to provide a scalable, remote-operation ion trap for a wide variety of quantum research without the need for ‘expert’ ion-trap knowledge. The target users span the range of ion-trap researchers,algorithms researchers, performance benchmarking researchers, and quantum simulation researchers.The control system features a user programming language, remote access to a compiling server, a sub-nanosecond time sequencing engine, arbitrary waveform generation for pulse shaping, and fully adjustable internal parameters. This platform affords the user extraordinary flexibility for many research use cases without requiring physical access. High-speed precision timing is achieved through the use of FPGA technology, while internal consistency (necessary for usability by non-experts) is achieved through an abstraction layer approach. Supercomputing-grade network infrastructure is employed to meet the strict timing requirements. An extensive suite of calibration tools and results is available to monitor machine-dependent parameters of the experiment. A sophisticated symbolic algebra system is used to create powerful calculations of precision timing sequences. Extensive automation is employed to remove the need for physical access, thus providing quantum computing to a wide audience. Under this model even the lowest-level control is avail-able to support innovative new designs, while a “library” of pre-defined sequences is also available to leverage “best practice” gates for those wishing rapid results. Finally, the user language itself is designed to be portable, allowing bindings to current popular classical languages such as Matlab and Python, and can be expanded for use in quantum-specific languages such as Cirq, Quill, and QASM .Through this approach the control system for QuantumIon is a flexible, powerful, scalable, and robust platform that is expected to be in use for a long tim
    corecore