25,784 research outputs found

    Decentralized Delay Optimal Control for Interference Networks with Limited Renewable Energy Storage

    Full text link
    In this paper, we consider delay minimization for interference networks with renewable energy source, where the transmission power of a node comes from both the conventional utility power (AC power) and the renewable energy source. We assume the transmission power of each node is a function of the local channel state, local data queue state and local energy queue state only. In turn, we consider two delay optimization formulations, namely the decentralized partially observable Markov decision process (DEC-POMDP) and Non-cooperative partially observable stochastic game (POSG). In DEC-POMDP formulation, we derive a decentralized online learning algorithm to determine the control actions and Lagrangian multipliers (LMs) simultaneously, based on the policy gradient approach. Under some mild technical conditions, the proposed decentralized policy gradient algorithm converges almost surely to a local optimal solution. On the other hand, in the non-cooperative POSG formulation, the transmitter nodes are non-cooperative. We extend the decentralized policy gradient solution and establish the technical proof for almost-sure convergence of the learning algorithms. In both cases, the solutions are very robust to model variations. Finally, the delay performance of the proposed solutions are compared with conventional baseline schemes for interference networks and it is illustrated that substantial delay performance gain and energy savings can be achieved

    A stochastic approximation algorithm for stochastic semidefinite programming

    Full text link
    Motivated by applications to multi-antenna wireless networks, we propose a distributed and asynchronous algorithm for stochastic semidefinite programming. This algorithm is a stochastic approximation of a continous- time matrix exponential scheme regularized by the addition of an entropy-like term to the problem's objective function. We show that the resulting algorithm converges almost surely to an ε\varepsilon-approximation of the optimal solution requiring only an unbiased estimate of the gradient of the problem's stochastic objective. When applied to throughput maximization in wireless multiple-input and multiple-output (MIMO) systems, the proposed algorithm retains its convergence properties under a wide array of mobility impediments such as user update asynchronicities, random delays and/or ergodically changing channels. Our theoretical analysis is complemented by extensive numerical simulations which illustrate the robustness and scalability of the proposed method in realistic network conditions.Comment: 25 pages, 4 figure

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201
    corecore