1,190 research outputs found

    Promoting Intermodal Connectivity at California’s High Speed Rail Stations

    Get PDF
    High-speed rail (HSR) has emerged as one of the most revolutionary and transformative transportation technologies, having a profound impact on urban-regional accessibility and inter-city travel across Europe, Japan, and more recently China and other Asian countries. One of HSR’s biggest advantages over air travel is that it offers passengers a one-seat ride into the center of major cities, eliminating time-consuming airport transfers and wait times, and providing ample opportunities for intermodal transfers at these locales. Thus, HSR passengers are typically able to arrive at stations that are only a short walk away from central business districts and major tourist attractions, without experiencing any of the stress that car drivers often experience in negotiating such highly congested environments. Such an approach requires a high level of coordination and planning of the infrastructural and spatial aspects of the HSR service, and a high degree of intermodal connectivity. But what key elements can help the US high-speed rail system blend successfully with other existing rail and transit services? That question is critically important now that high-speed rail is under construction in California. The study seeks to understand the requirements for high levels of connectivity and spatial and operational integration of HSR stations and offer recommendations for seamless, and convenient integrated service in California intercity rail/HSR stations. The study draws data from a review of the literature on the connectivity, intermodality, and spatial and operational integration of transit systems; a survey of 26 high-speed rail experts from six different European countries; and an in-depth look of the German and Spanish HSR systems and some of their stations, which are deemed as exemplary models of station connectivity. The study offers recommendations on how to enhance both the spatial and the operational connectivity of high-speed rail systems giving emphasis on four spatial zones: the station, the station neighborhood, the municipality at large, and the region

    Research on Xiamen port network layout from the perspective of harbors and inland ports linked development

    Get PDF

    Shunting of Passenger Train Units: an Integrated Approach

    Get PDF
    In this paper, we describe a new model for the Train Unit Shunting Problem. This model is capable of solving the matching and parking subproblems in an integrated manner, usually requiring a reasonable amount of computation time for generating acceptable solutions. Furthermore, the model incorporates complicating details from practice, such as trains composed of several train units and tracks that can be approached from two sides. Computation times are reduced by introducing the concept of virtual shunt tracks. Computational results are presented for real-life cases of NS Reizigers, the main Dutch passenger railway operator.Optimization;Passenger Railways;Shunting

    Multi-objective Model on Connection Time Optimization in Sea-rail Intermodal Transport

    Get PDF
    Container sea-rail intermodal transport operation needs to consider some special demands both in volume and time connection. That means container sea-rail intermodal transport is a type of demand responsive transport between railroad trains and marine ships, vice versa. It needs to operate container trains according to the demands of ships in OD, volume, as well as the arrival and departure time. Basing on this responsive demand characteristic of sea-rail intermodal transport, the paper establishes a multi-objective optimal model for its connection time, aiming for maximizing the profits of carriers and minimizing the total transport costs of shippers, as well as minimizing the connection time between container trains and ships to optimizing the intermodal transport system. Modified genetic algorithm is adopted. The calculation results demonstrate that the model could be used to solve the connection problem of container sea-rail intermodal transport involved with volume and time connections

    Evaluation of Actual Timetables and Utilization Levels of West Midlands Metro Using Event-Based Simulations

    Get PDF
    The performance of the West Midlands Metro in the United Kingdom is analyzed in the present study by evaluating the existing timetables of the metro system. Using SIMUL8 computer software, a discrete event-based simulation prototype modeling the metro system is developed and implemented. The model adequately describes the performance of the West Midlands Metro system. By running simulations, the overall utilization level of the metro system is calculated. The results of the simulation model indicate that the metro system is being underutilized. The low utilization rates indicate a potential for the introduction of new services capable of exploiting the existing infrastructure and improving the utilization levels of the existing metro system; For example, the potential of using the current metro system for urban freight transport could be a new service of interest and provide scope for further research

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Development of a multimodal port freight transportation model for estimating container throughput

    Get PDF
    Computer based simulation models have often been used to study the multimodal freight transportation system. But these studies have not been able to dynamically couple the various modes into one model; therefore, they are limited in their ability to inform on dynamic system level interactions. This research thesis is motivated by the need to dynamically couple the multimodal freight transportation system to operate at multiple spatial and temporal scales. It is part of a larger research program to develop a systems modeling framework applicable to freight transportation. This larger research program attempts to dynamically couple railroad, seaport, and highway freight transportation models. The focus of this thesis is the development of the coupled railroad and seaport models. A separate volume (Wall 2010) on the development of the highway model has been completed. The model railroad and seaport was developed using Arena® simulation software and it comprises of the Ports of Savannah, GA, Charleston, NC, Jacksonville, FL, their adjacent CSX rail terminal, and connecting CSX railroads in the southeastern U.S. However, only the simulation outputs for the Port of Savannah are discussed in this paper. It should be mentioned that the modeled port layout is only conceptual; therefore, any inferences drawn from the model's outputs do not represent actual port performance. The model was run for 26 continuous simulation days, generating 141 containership calls, 147 highway truck deliveries of containers, 900 trains, and a throughput of 28,738 containers at the Port of Savannah, GA. An analysis of each train's trajectory from origin to destination shows that trains spend between 24 - 67 percent of their travel time idle on the tracks waiting for permission to move. Train parking demand analysis on the adjacent shunting area at the multimodal terminal seems to indicate that there aren't enough containers coming from the port because the demand is due to only trains waiting to load. The simulation also shows that on average it takes containerships calling at the Port of Savannah about 3.2 days to find an available dock to berth and unload containers. The observed mean turnaround time for containerships was 4.5 days. This experiment also shows that container residence time within the port and adjacent multimodal rail terminal varies widely. Residence times within the port range from about 0.2 hours to 9 hours with a mean of 1 hour. The average residence time inside the rail terminal is about 20 minutes but observations varied from as little as 2 minutes to a high of 2.5 hours. In addition, about 85 percent of container residence time in the port is spent idle. This research thesis demonstrates that it is possible to dynamically couple the different sub-models of the multimodal freight transportation system. However, there are challenges that need to be addressed by future research. The principal challenge is the development of a more efficient train movement algorithm that can incorporate the actual Direct Traffic Control (DTC) and / or Automatic Block Signal (ABS) track segmentation. Such an algorithm would likely improve the capacity estimates of the railroad network. In addition, future research should seek to reduce the high computational cost imposed by a discrete process modeling methodology and the adoption of single container resolution level for terminal operations. A methodology combining both discrete and continuous process modeling as proposed in this study could lessen computational costs and lower computer system requirements at a cost of some of the feedback capabilities of the model This tradeoff must be carefully examined.M.S.Committee Chair: Rodgers, Michael; Committee Member: Guensler, Randall; Committee Member: Hunter, Michae

    Review of fuzzy techniques in maritime shipping operations

    Get PDF

    Collaboration modes and advantages in supply chain

    Get PDF
    This research aims to address supply chain collaboration with a perspective of broader three-dimensional relationship, not a linear two-dimensional relationship discussed broadly in previous research. Case study was adopted for this research, and data collection was mainly conducted via interview. The research results highlighted that supply chain collaborations are common practice across all levels of the pharmaceutical supply chain. The results also indicated that the different strengthen levels of barging power among collaborative partners will influence the achieved advantages at different supply chain levels, including strategic, operational and political levels

    Research on construction of agri-products logistics system in Wenzhou

    Get PDF
    corecore