185,519 research outputs found

    JXTA-Overlay: a P2P platform for distributed, collaborative, and ubiquitous computing

    Get PDF
    With the fast growth of the Internet infrastructure and the use of large-scale complex applications in industries, transport, logistics, government, health, and businesses, there is an increasing need to design and deploy multifeatured networking applications. Important features of such applications include the capability to be self-organized, be decentralized, integrate different types of resources (personal computers, laptops, and mobile and sensor devices), and provide global, transparent, and secure access to resources. Moreover, such applications should support not only traditional forms of reliable distributing computing and optimization of resources but also various forms of collaborative activities, such as business, online learning, and social networks in an intelligent and secure environment. In this paper, we present the Juxtapose (JXTA)-Overlay, which is a JXTA-based peer-to-peer (P2P) platform designed with the aim to leverage capabilities of Java, JXTA, and P2P technologies to support distributed and collaborative systems. The platform can be used not only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing by integrating in the platform end devices. The design of a user interface as well as security issues are also tackled. We evaluate the proposed system by experimental study and show its usefulness for massive processing computations and e-learning applications.Peer ReviewedPostprint (author's final draft

    Fair scheduling of bag-of-tasks applications using distributed Lagrangian optimization

    Get PDF
    International audienceLarge scale distributed systems typically comprise hundreds to millions of entities (applications, users, companies, universities) that have only a partial view of resources (computers, communication links). How to fairly and efficiently share such resources between entities in a distributed way has thus become a critical question. Although not all applications are suitable for execution on large scale distributed computing platform, ideal are the Bag-of-Tasks (BoT) applications. Hence a large fraction of jobs in workloads imposed on Grids is made of sequential applications submitted in the form of BoTs. Up until now, mainly simple mechanisms have been used to ensure a fair sharing of resources among these applications. Although these mechanisms are proved to be efficient for CPU-bound applications, they are known to be ineffective in the presence of network-bound applications. A possible answer resorts to Lagrangian optimization and distributed gradient descent. Under certain conditions, the resource sharing problem can be formulated as a global optimization problem, which can be solved by a distributed self-stabilizing supply and demand algorithm. In the last decade, this technique has been applied to design various network protocols (variants of TCP, multi-path network protocols, wireless network protocols) and even distributed algorithms for smart grids. In this article, we explain how to use this technique for fairly scheduling concurrent BoT applications with arbitrary communication-to-computation ratio on a Grid. Yet, application heterogeneity raises severe convergence and stability issues that did not appear in the previous contexts and need to be addressed by non-trivial modifications. The effectiveness of our proposal is assessed through an extensive set of complex and realistic simulations

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    corecore