704,433 research outputs found

    Designing Algorithms for Optimization of Parameters of Functioning of Intelligent System for Radionuclide Myocardial Diagnostics

    Full text link
    The influence of the number of complex components of Fast Fourier transformation in analyzing the polar maps of radionuclide examination of myocardium at rest and stress on the functional efficiency of the system of diagnostics of pathologies of myocardium was explored, and there were defined their optimum values in the information sense, which allows increasing the efficiency of the algorithms of forming the diagnostic decision rules by reducing the capacity of the dictionary of features of recognition.The information-extreme sequential cluster algorithms of the selection of the dictionary of features, which contains both quantitative and category features were developed and the results of their work were compared. The modificatios of the algorithms of the selection of the dictionary were suggested, which allows increasing both the search speed of the optimal in the information sense dictionary and reducing its capacity by 40 %. We managed to get the faultless by the training matrix decision rules, the accuracy of which is in the exam mode asymptotically approaches the limit.It was experimentally confirmed that the implementation of the proposed algorithm of the diagnosing system training has allowed to reduce the minimum representative volume of the training matrix from 300 to 81 vectors-implementations of the classes of recognition of the functional myocardium state

    Novel Artificial Human Optimization Field Algorithms - The Beginning

    Full text link
    New Artificial Human Optimization (AHO) Field Algorithms can be created from scratch or by adding the concept of Artificial Humans into other existing Optimization Algorithms. Particle Swarm Optimization (PSO) has been very popular for solving complex optimization problems due to its simplicity. In this work, new Artificial Human Optimization Field Algorithms are created by modifying existing PSO algorithms with AHO Field Concepts. These Hybrid PSO Algorithms comes under PSO Field as well as AHO Field. There are Hybrid PSO research articles based on Human Behavior, Human Cognition and Human Thinking etc. But there are no Hybrid PSO articles which based on concepts like Human Disease, Human Kindness and Human Relaxation. This paper proposes new AHO Field algorithms based on these research gaps. Some existing Hybrid PSO algorithms are given a new name in this work so that it will be easy for future AHO researchers to find these novel Artificial Human Optimization Field Algorithms. A total of 6 Artificial Human Optimization Field algorithms titled "Human Safety Particle Swarm Optimization (HuSaPSO)", "Human Kindness Particle Swarm Optimization (HKPSO)", "Human Relaxation Particle Swarm Optimization (HRPSO)", "Multiple Strategy Human Particle Swarm Optimization (MSHPSO)", "Human Thinking Particle Swarm Optimization (HTPSO)" and "Human Disease Particle Swarm Optimization (HDPSO)" are tested by applying these novel algorithms on Ackley, Beale, Bohachevsky, Booth and Three-Hump Camel Benchmark Functions. Results obtained are compared with PSO algorithm.Comment: 25 pages, 41 figure

    Applications of Bee Colony Optimization

    Get PDF
    Many computationally difficult problems are attacked using non-exact algorithms, such as approximation algorithms and heuristics. This thesis investigates an ex- ample of the latter, Bee Colony Optimization, on both an established optimization problem in the form of the Quadratic Assignment Problem and the FireFighting problem, which has not been studied before as an optimization problem. Bee Colony Optimization is a swarm intelligence algorithm, a paradigm that has increased in popularity in recent years, and many of these algorithms are based on natural pro- cesses. We tested the Bee Colony Optimization algorithm on the QAPLIB library of Quadratic Assignment Problem instances, which have either optimal or best known solutions readily available, and enabled us to compare the quality of solutions found by the algorithm. In addition, we implemented a couple of other well known algorithms for the Quadratic Assignment Problem and consequently we could analyse the runtime of our algorithm. We introduce the Bee Colony Optimization algorithm for the FireFighting problem. We also implement some greedy algorithms and an Ant Colony Optimization al- gorithm for the FireFighting problem, and compare the results obtained on some randomly generated instances. We conclude that Bee Colony Optimization finds good solutions for the Quadratic Assignment Problem, however further investigation on speedup methods is needed to improve its performance to that of other algorithms. In addition, Bee Colony Optimization is effective on small instances of the FireFighting problem, however as instance size increases the results worsen in comparison to the greedy algorithms, and more work is needed to improve the decisions made on these instances
    • …
    corecore