364 research outputs found

    Scheduling multiple divisible loads on a linear processor network

    Get PDF
    Min, Veeravalli, and Barlas have recently proposed strategies to minimize the overall execution time of one or several divisible loads on a heterogeneous linear network, using one or more installments. We show on a very simple example that their approach does not always produce a solution and that, when it does, the solution is often suboptimal. We also show how to find an optimal schedule for any instance, once the number of installments per load is given. Then, we formally state that any optimal schedule has an infinite number of installments under a linear cost model as the one assumed in the original papers. Therefore, such a cost model cannot be used to design practical multi-installment strategies. Finally, through extensive simulations we confirmed that the best solution is always produced by the linear programming approach, while solutions of the original papers can be far away from the optimal

    Divisible load scheduling of image processing applications on the heterogeneous star and tree networks using a new genetic algorithm

    Get PDF
    The divisible load scheduling of image processing applications on the heterogeneous star and multi-level tree networks is addressed in this paper. In our platforms, processors and network links have different speeds. In addition, computation and communication overheads are considered. A new genetic algorithm for minimizing the processing time of low-level image applications using divisible load theory is introduced. The closed-form solution for the processing time, the image fractions that should be allocated to each processor, the optimum number of participating processors, and the optimal sequence for load distribution are derived. The new concept of equivalent processor in tree network is introduced and the effect of different image and kernel sizes on processing time and speed up are investigated. Finally, to indicate the efficiency of our algorithm, several numerical experiments are presented

    Revisiting Matrix Product on Master-Worker Platforms

    Get PDF
    This paper is aimed at designing efficient parallel matrix-product algorithms for heterogeneous master-worker platforms. While matrix-product is well-understood for homogeneous 2D-arrays of processors (e.g., Cannon algorithm and ScaLAPACK outer product algorithm), there are three key hypotheses that render our work original and innovative: - Centralized data. We assume that all matrix files originate from, and must be returned to, the master. - Heterogeneous star-shaped platforms. We target fully heterogeneous platforms, where computational resources have different computing powers. - Limited memory. Because we investigate the parallelization of large problems, we cannot assume that full matrix panels can be stored in the worker memories and re-used for subsequent updates (as in ScaLAPACK). We have devised efficient algorithms for resource selection (deciding which workers to enroll) and communication ordering (both for input and result messages), and we report a set of numerical experiments on various platforms at Ecole Normale Superieure de Lyon and the University of Tennessee. However, we point out that in this first version of the report, experiments are limited to homogeneous platforms

    Ishu bunsan shisutemu ni okeru kabun tasuku no sukejulingu

    Get PDF
    制度:新 ; 報告番号:甲2691号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2008/7/30 ; 早大学位記番号:新486

    Static Scheduling Strategies for Heterogeneous Systems

    Get PDF
    In this paper, we consider static scheduling techniques for heterogeneous systems, such as clusters and grids. We successively deal with minimum makespan scheduling, divisible load scheduling and steady-state scheduling. Finally, we discuss the limitations of static scheduling approaches
    corecore