3,130 research outputs found

    Interval type-2 fuzzy modelling and stochastic search for real-world inventory management

    Get PDF
    Real-world systems present a variety of challenges to the modeller, not least of which is the problem of uncertainty inherent in their operation. In this research, an interval type-2 fuzzy model is applied to a real-world problem, the goal being to discover a suitable optimisation configuration to enable a search for an inventory plan using the model. To this end, a series of simulated annealing configurations and the interval type-2 fuzzy model were used to search for appropriate inventory plans for a large-scale real-world problem. A further set of tests were conducted in which the performance of the interval type-2 fuzzy model was compared with a corresponding type-1 fuzzy model. In these tests the results were inconclusive, though, as will be discussed there are many ways in which type-2 fuzzy logic can be exploited to demonstrate its advantages over a type-1 approach. To conclude, in this research we have shown that a combination of interval type-2 fuzzy logic and simulated annealing is a logical choice for inventory management modelling and inventory plan search, and propose that the benefits that a type-2 model offers, can make it preferable to a corresponding type-1 system

    An investigation of the trading agent competition : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University, Albany, New Zealand

    Get PDF
    The Internet has swept over the whole world. It is influencing almost every aspect of society. The blooming of electronic commerce on the back of the Internet further increases globalisation and free trade. However, the Internet will never reach its full potential as a new electronic media or marketplace unless agents are developed. The trading Agent Competition (TAC), which simulates online auctions, was designed to create a standard problem in the complex domain of electronic marketplaces and to inspire researchers from all over the world to develop distinctive software agents to a common exercise. In this thesis, a detailed study of intelligent software agents and a comprehensive investigation of the Trading Agent Competition will be presented. The design of the Risker Wise agent and a fuzzy logic system predicting the bid increase of the hotel auction in the TAC game will be discussed in detail

    Improving performance and the reliability of off-site pre-cast concrete production operations using simulation optimisation

    Get PDF
    The increased use of precast components in building and heavy civil engineering projects has led to the introduction of innovative management and scheduling systems to meet the demand for increased reliability, efficiency and cost reduction. The aim of this study is to develop an innovative crew allocation system that can efficiently allocate crews of workers to labour-intensive repetitive processes. The objective is to improve off-site pre-cast production operations using Multi-Layered Genetic Algorithms. The Multi-Layered concept emerged in response to the modelling requirements of different sets of labour inputs. As part of the techniques used in developing the Crew Allocation “SIM_Crew” System, a process mapping methodology is used to model the processes of precast concrete operations and to provide the framework and input required for simulation. Process simulation is then used to model and imitate all production processes, and Genetic Algorithms are embedded within the simulation model to provide a rapid and intelligent search. A Multi-Layered chromosome is used to store different sets of inputs such as crews working on different shifts and process priorities. A ‘Class Interval’ selection strategy is developed to improve the chance of selecting the most promising chromosomes for further investigation. Multi-Layered Dynamic crossover and mutation operators are developed to increase the randomness of the searching mechanism for solutions in the solution space. The results illustrate that adopting different combinations of crews of workers has a substantial impact on the labour allocation cost and this should lead to increased efficiency and lower production cost. In addition, the results of the simulation show that minimum throughput time, minimum process-waiting time and optimal resource utilisation profiles can be achieved when compared to a real-life case study

    Inventory optimisation with an interval type-2 fuzzy model.

    Get PDF
    The planning of resources within a supply chain can prove to be a deciding factor in the success or failure of an operation. This research continues the authors' previous work using an extended Interval Type-2 Fuzzy Logic supply chain model, with an Evolutionary Algorithm to search for good resource plans. A set of enhanced experiments is conducted to validate our novel approach with optimal configurations, and determine an appropriate Evolutionary Algorithm set up for the given problem

    A survey of AI in operations management from 2005 to 2009

    Get PDF
    Purpose: the use of AI for operations management, with its ability to evolve solutions, handle uncertainty and perform optimisation continues to be a major field of research. The growing body of publications over the last two decades means that it can be difficult to keep track of what has been done previously, what has worked, and what really needs to be addressed. Hence this paper presents a survey of the use of AI in operations management aimed at presenting the key research themes, trends and directions of research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the ten-year period 1995-2004. Like the previous survey, it uses Elsevier’s Science Direct database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus, the application categories adopted are: design; scheduling; process planning and control; and quality, maintenance and fault diagnosis. Research on utilising neural networks, case-based reasoning (CBR), fuzzy logic (FL), knowledge-Based systems (KBS), data mining, and hybrid AI in the four application areas are identified. Findings: the survey categorises over 1,400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: the trends for design and scheduling show a dramatic increase in the use of genetic algorithms since 2003 that reflect recognition of their success in these areas; there is a significant decline in research on use of KBS, reflecting their transition into practice; there is an increasing trend in the use of FL in quality, maintenance and fault diagnosis; and there are surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the 10 year period 1995 to 2004 (Kobbacy et al. 2007). Like the previous survey, it uses the Elsevier’s ScienceDirect database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus the application categories adopted are: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Research on utilising neural networks, case based reasoning, fuzzy logic, knowledge based systems, data mining, and hybrid AI in the four application areas are identified. Findings: The survey categorises over 1400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: (a) The trends for Design and Scheduling show a dramatic increase in the use of GAs since 2003-04 that reflect recognition of their success in these areas, (b) A significant decline in research on use of KBS, reflecting their transition into practice, (c) an increasing trend in the use of fuzzy logic in Quality, Maintenance and Fault Diagnosis, (d) surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Originality/value: This is the largest and most comprehensive study to classify research on the use of AI in operations management to date. The survey and trends identified provide a useful reference point and directions for future research

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Proposing a Model for Religious Tourism Development: Evidence from Iran

    Get PDF
    This study proposes a model for religious tourism as one of the most promising types of tourism worldwide, by focusing on the conditions of Iran as a potentially popular destination for religious tourism. The study relies on a mixed (qualitative and quantitative) method. The qualitative phase identifies the model dimensions and strategies. To do this, practitioners and experts were interviewed and the data collected were investigated through the thematic analysis method. This process revealed four main dimensions and 18 subsidiary strategies. In the quantitative phase, the dimensions and strategies identified were arranged in a questionnaire and through the survey method, were prioritised by experts in the Iranian tourism industry. The data analysis results, based on intuitionistic fuzzy AHP, revealed that the most important dimensions in religious tourism, as assessed by experts and practitioners in the Iranian tourism industry, were: ‘marketing strategies’, ‘HR training and development’, ‘reinforcing executive management structures’, and ‘implementing information technology.’ Finally, following a comparison of the results with those of another studies in this field, some executive and research-related suggestions are proposed
    corecore