8,411 research outputs found

    Multiphase sampling using expected value of information

    Get PDF
    This paper explores multiphase or infill sampling to reduce uncertainty after an initial sample has been taken and analysed to produce a map of the probability of some hazard. New observations are iteratively added by maximising the global expected value of information of the points. This is equivalent to minimisation of global misclassification costs. The method accounts for measurement error and different costs of type I and type II errors. Constraints imposed by a mobile sensor web can be accommodated using cost distances rather than Euclidean distances to decide which sensor moves to the next sample location. Calculations become demanding when multiple sensors move simultaneously. In that case, a genetic algorithm can be used to find sets of suitable new measurement locations. The method was implemented using R software for statistical computing and contributed libraries and it is demonstrated using a synthetic data set

    Participatory sensing as an enabler for self-organisation in future cellular networks

    Get PDF
    In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells

    The Programmable City

    Get PDF
    AbstractThe worldwide proliferation of mobile connected devices has brought about a revolution in the way we live, and will inevitably guide the way in which we design the cities of the future. However, designing city-wide systems poses a new set of challenges in terms of scale, manageability and citizen involvement. Solving these challenges is crucial to making sure that the vision of a programmable Internet of Things (IoT) becomes reality. In this article we will analyse these issues and present a novel programming approach to designing scalable systems for the Internet of Things, with an emphasis on smart city applications, that addresses these issues

    Location-Quality-aware Policy Optimisation for Relay Selection in Mobile Networks

    Get PDF
    Relaying can improve the coverage and performance of wireless access networks. In presence of a localisation system at the mobile nodes, the use of such location estimates for relay node selection can be advantageous as such information can be collected by access points in linear effort with respect to number of mobile nodes (while the number of links grows quadratically). However, the localisation error and the chosen update rate of location information in conjunction with the mobility model affect the performance of such location-based relay schemes; these parameters also need to be taken into account in the design of optimal policies. This paper develops a Markov model that can capture the joint impact of localisation errors and inaccuracies of location information due to forwarding delays and mobility; the Markov model is used to develop algorithms to determine optimal location-based relay policies that take the aforementioned factors into account. The model is subsequently used to analyse the impact of deployment parameter choices on the performance of location-based relaying in WLAN scenarios with free-space propagation conditions and in an measurement-based indoor office scenario.Comment: Accepted for publication in ACM/Springer Wireless Network

    Remote Assessment of Cultural Heritage Environments with Wireless Sensor Array Networks

    Get PDF
    The logistics and cost of environmental monitoring can represent challenges for heritage managers, partly because of the sheer number of environmental parameters to consider. There is a need for a system, capable of monitoring the holistic impact of the environment on cultural materials while remaining relatively easy to use and providing remote access. This paper describes a dosimetric system based on piezoelectric quartz crystal technology. The prototype sensing module consists of an array of piezoelectric quartz crystals (PQC) coated with different metals (Fe, Cu, Ni and Sn) and includes a temperature and relative humidity sensor. The communication module involves an 802.15.4 low-power radio and a GPRS gateway which allows real time visualisation of the measurements online. An energy management protocol ensures that the system consumes very low power between measurements. The paper also describes the results and experiences from two heritage field deployments, at Apsley House in London, UK, and at the Royal Palaces of Abomey in Benin. Evaluation of PQC measurements, temperature, relative humidity and the rate of successful transmission over the communication systems are also reported

    Optimal data collection in wireless sensor networks with correlated energy harvesting

    Get PDF
    We study the optimal data collection rate in a hybrid wireless sensor network where sensor data is collected by mobile sinks. In such networks, there is a trade-off between the cost of data collection and the timeliness of the data. We further assume that the sensor node under study harvests its energy from its environment. Such energy harvesting sensors ideally operate energy neutral, meaning that they can harvest the necessary energy to sense and transmit data, and have on-board rechargeable batteries to level out energy harvesting fluctuations. Even with batteries, fluctuations in energy harvesting can considerably affect performance, as it is not at all unlikely that a sensor node runs out of energy, and is neither able to sense nor to transmit data. The energy harvesting process also influences the cost vs. timeliness trade-off as additional data collection requires additional energy as well. To study this trade-off, we propose an analytic model for the value of the information that a sensor node brings to decision-making. We account for the timeliness of the data by discounting the value of the information at the sensor over time, we adopt the energy chunk approach (i.e. discretise the energy level) to track energy harvesting and expenditure over time, and introduce correlation in the energy harvesting process to study its influence on the optimal collection rate
    corecore