1,972 research outputs found

    Query Rewriting in RDF Stream Processing

    Get PDF
    Querying and reasoning over RDF streams are two increasingly relevant areas in the broader scope of processing structured data on the Web. While RDF Stream Processing (RSP) has focused so far on extending SPARQL for continuous query and event processing, stream reasoning has concentrated on ontology evolution and incremental materialization. In this paper we propose a different approach for querying RDF streams over ontologies, based on the combination of query rewriting and stream processing. We show that it is possible to rewrite continuous queries over streams of RDF data, while maintaining efficiency for a wide range of scenarios. We provide a detailed description of our approach, as well as an implementation, StreamQR, which is based on the kyrie rewriter, and can be coupled with a native RSP engine, namely CQELS. Finally, we show empirical evidence of the performance of StreamQR in a series of experiments based on the SRBench query set

    A survey of large-scale reasoning on the Web of data

    Get PDF
    As more and more data is being generated by sensor networks, social media and organizations, the Webinterlinking this wealth of information becomes more complex. This is particularly true for the so-calledWeb of Data, in which data is semantically enriched and interlinked using ontologies. In this large anduncoordinated environment, reasoning can be used to check the consistency of the data and of asso-ciated ontologies, or to infer logical consequences which, in turn, can be used to obtain new insightsfrom the data. However, reasoning approaches need to be scalable in order to enable reasoning over theentire Web of Data. To address this problem, several high-performance reasoning systems, whichmainly implement distributed or parallel algorithms, have been proposed in the last few years. Thesesystems differ significantly; for instance in terms of reasoning expressivity, computational propertiessuch as completeness, or reasoning objectives. In order to provide afirst complete overview of thefield,this paper reports a systematic review of such scalable reasoning approaches over various ontologicallanguages, reporting details about the methods and over the conducted experiments. We highlight theshortcomings of these approaches and discuss some of the open problems related to performing scalablereasoning

    RDF Stream Processing: Let's React

    Get PDF
    Stream processing has recently gained a prominent role in Computer Science research. From networks or databases to information theory or programming languages, a lot of work has been dedicated to conceive ways of representing, transmitting, processing and understanding infinite sequences of data. Nevertheless, there are still aspects that need time to reach a mature state. In particular, heterogeneity in stream data management and event processing is both a challenging topic and a key enabler for the rising Web of Things, where smart devices continuously sense properties of the surrounding world. Different proposals on RDF and Linked Data streams have shown promising results for managing this type of data, while keeping explicit semantics on the data streams, and linking them to other datasets in a web-friendly way. With time, these efforts led to the emergence of initiatives such as the RDF Stream Processing (RSP) W3C community group, aiming at specifying a base RDF stream model and query language for that model. Although these works produced interest results in defining overarching model definitions, there are still multiple orthogonal challenges that need to be addressed. In this work we identify some of these challenges, and we link them to the characteristics of what are nowadays called reactive systems. This paradigm includes natively supporting event-driven asynchronous message passing, non-blocking data communication and processing through all layers, and on-demand flexible scalability. We argue that RDF stream systems, combined with reactive techniques can lead to powerful, resilient and interoperable systems at Web scale

    Streaming the Web: Reasoning over dynamic data.

    Get PDF
    In the last few years a new research area, called stream reasoning, emerged to bridge the gap between reasoning and stream processing. While current reasoning approaches are designed to work on mainly static data, the Web is, on the other hand, extremely dynamic: information is frequently changed and updated, and new data is continuously generated from a huge number of sources, often at high rate. In other words, fresh information is constantly made available in the form of streams of new data and updates. Despite some promising investigations in the area, stream reasoning is still in its infancy, both from the perspective of models and theories development, and from the perspective of systems and tools design and implementation. The aim of this paper is threefold: (i) we identify the requirements coming from different application scenarios, and we isolate the problems they pose; (ii) we survey existing approaches and proposals in the area of stream reasoning, highlighting their strengths and limitations; (iii) we draw a research agenda to guide the future research and development of stream reasoning. In doing so, we also analyze related research fields to extract algorithms, models, techniques, and solutions that could be useful in the area of stream reasoning. © 2014 Elsevier B.V. All rights reserved

    Ontology evolution: a process-centric survey

    Get PDF
    Ontology evolution aims at maintaining an ontology up to date with respect to changes in the domain that it models or novel requirements of information systems that it enables. The recent industrial adoption of Semantic Web techniques, which rely on ontologies, has led to the increased importance of the ontology evolution research. Typical approaches to ontology evolution are designed as multiple-stage processes combining techniques from a variety of fields (e.g., natural language processing and reasoning). However, the few existing surveys on this topic lack an in-depth analysis of the various stages of the ontology evolution process. This survey extends the literature by adopting a process-centric view of ontology evolution. Accordingly, we first provide an overall process model synthesized from an overview of the existing models in the literature. Then we survey the major approaches to each of the steps in this process and conclude on future challenges for techniques aiming to solve that particular stage
    • …
    corecore