339 research outputs found

    Stopping ongoing broadcasts in large MANETs

    Get PDF
    Broadcast is a communication primitive building block widely used in mobile ad-hoc networks (MANETs) for the exchange of control packets and resource location for upper level services such as routing and management protocols. Flooding is the most simple broadcast algorithm, but it wastes a lot of energy and bandwidth, as flooding leads to many redundant radio transmissions. An optimization to flooding is to contain it, once the resource has been found. In this paper, we compare the impact on the latency and power consumption of four competing approaches for flooding containment. The results show that stopping ongoing broadcasts can achieve promising performance increases over other flooding base techniques, when applied in large scale MANETs with scarce power resources. In addition, results show that both network topology and the number of copies of the resource influence differently the performance of each searching approach.(undefined

    On search sets of expanding ring search in wireless networks

    Get PDF
    We focus on the problem of finding the best search set for expanding ring search (ERS) in wireless networks. ERS is widely used to locate randomly selected destinations or information in wireless networks such as wireless sensor networks In ERS, controlled flooding is employed to search for the destinations in a region limited by a time-to-live (TTL) before the searched region is expanded. The performance of such ERS schemes depends largely on the search set, the set of TTL values that are used sequentially to search for one destination. Using a cost function of searched area size, we identify, through analysis and numerical calculations, the optimum search set for the scenarios where the source is at the center of a circular region and the destination is randomly chosen within the entire network. When the location of the source node and the destination node are both randomly distributed, we provide an almost-optimal search set. This search set guarantees the search cost to be at most 1% higher than the minimum search cost, when the network radius is relatively large

    Pro-Diluvian: Understanding scoped-flooding for content discovery in information-centric networking

    Get PDF
    Scoped-flooding is a technique for content discovery in a broad networking context. This paper investigates the ef-fects of scoped-flooding on various topologies in information-centric networking. Using the proposed ring model, we show that flooding can be constrained within a very small neigh-bourhood to achieve most of the gains which come from areas where the growth rate is relatively low, i.e., the net-work edge. We also study two flooding strategies and com-pare their behaviours. Given that caching schemes favour more popular items in competition for cache space, popu-lar items are expected to be stored in diverse parts of the network compared to the less popular items. We propose to exploit the resulting divergence in availability along with the routers ’ topological properties to fine tune the flooding radius. Our results shed light on designing ecient con-tent discovery mechanism for future information-centric net-works

    Optimising lower layers of the protocol stack to improve communication performance in a wireless temperature sensor network

    Get PDF
    The function of wireless sensor networks is to monitor events or gather information and report the information to a sink node, a central location or a base station. It is a requirement that the information is transmitted through the network efficiently. Wireless communication is the main activity that consumes energy in wireless sensor networks through idle listening, overhearing, interference and collision. It becomes essential to limit energy usage while maintaining communication between the sensor nodes and the sink node as the nodes die after the battery has been exhausted. Thus, conserving energy in a wireless sensor network is of utmost importance. Numerous methods to decrease energy expenditure and extend the lifetime of the network have been proposed. Researchers have devised methods to efficiently utilise the limited energy available for wireless sensor networks by optimising the design parameters and protocols. Cross-layer optimisation is an approach that has been employed to improve wireless communication. The essence of cross-layer scheme is to optimise the exchange and control of data between two or more layers to improve efficiency. The number of transmissions is therefore a vital element in evaluating overall energy usage. In this dissertation, a Markov Chain model was employed to analyse the tuning of two layers of the protocol stack, namely the Physical Layer (PHY) and Media Access Control layer (MAC), to find possible energy gains. The study was conducted utilising the IEEE 802.11 channel, SensorMAC (SMAC) and Slotted-Aloha (S-Aloha) medium access protocols in a star topology Wireless Temperature Sensor Network (WTSN). The research explored the prospective energy gains that could be realised through optimizing the Forward Error Correction (FEC) rate. Different Reed Solomon codes were analysed to explore the effect of protocol tuning on energy efficiency, namely transmission power, modulation method, and channel access. The case where no FEC code was used and analysed as the control condition. A MATLAB simulation model was used to identify the statistics of collisions, overall packets transmitted, as well as the total number of slots used during the transmission phase. The bit error probability results computed analytically were utilised in the simulation model to measure the probability of successful transmitting data in the physical layer. The analytical values and the simulation results were compared to corroborate the correctness of the models. The results indicate that energy gains can be accomplished by the suggested layer tuning approach.Electrical and Mining EngineeringM. Tech. (Electrical Engineering

    Towards the efficient use of LoRa for wireless sensor networks

    Get PDF
    Since their inception in 1998 with the Smart Dust Project from University of Berkeley, Wireless Sensor Networks (WSNs) had a tremendous impact on both science and society, influencing many (new) research fields, like Cyber-physical System (CPS), Machine to Machine (M2M), and Internet of Things (IoT). In over two decades, WSN researchers have delivered a wide-range of hardware, communication protocols, operating systems, and applications, to deal with the now classic problems of resourceconstrained devices, limited energy sources, and harsh communication environments. However, WSN research happened mostly on the same kind of hardware. With wireless communication and embedded hardware evolving, there are new opportunities to resolve the long standing issues of scaling, deploying, and maintaining a WSN. To this end, we explore in this work the most recent advances in low-power, longrange wireless communication, and the new challenges these new wireless communication techniques introduce. Specifically, we focus on the most promising such technology: LoRa. LoRa is a novel low-power, long-range communication technology, which promises a single-hop network with millions of sensor nodes. Using practical experiments, we evaluate the unique properties of LoRa, like orthogonal spreading factors, nondestructive concurrent transmissions, and carrier activity detection. Utilising these unique properties, we build a novel TDMA-style multi-hop Medium Access Control (MAC) protocol called LoRaBlink. Based on empirical results, we develop a communication model and simulator called LoRaSim to explore the scalability of a LoRa network. We conclude that, in its current deployment, LoRa cannot support the scale it is envisioned to operate at. One way to improve this scalability issue is Adaptive Data Rate (ADR). We develop two ADR protocols, Probing and Optimistic Probing, and compare them with the de facto standard ADR protocol used in the crowdsourced TTN LoRaWAN network. We demonstrate that our algorithms are much more responsive, energy efficient, and able to reach a more efficient configuration quicker, though reaching a suboptimal configuration for poor links, which is offset by the savings caused by the convergence speed. Overall, this work provides theoretical and empirical proofs that LoRa can tackle some of the long standing problems within WSN. We envision that future work, in particular on ADR and MAC protocols for LoRa and other low-power, long-range communication technologies, will help push these new communication technologies to main-stream status in WSNs

    Message forwarding techniques in Bluetooth enabled opportunistic communication environment

    Get PDF
    These days, most of the mobile phones are smart enough with computer like intelligence and equipped with multiple communication technologies such as Bluetooth, wireless LAN, GPRS and GSM. Different communication medium on single device have unlocked the new horizon of communication means. Modern mobile phones are not only capable of using traditional way of communication via GSM or GPRS; but, also use wireless LANs using access points where available. Among these communication means, Bluetooth technology is very intriguing and unique in nature. Any two devices equipped with Bluetooth technology can communicate directly due to their unique IDs in the world. This is opposite to GSM or Wireless LAN technology; where devices are dependent on infrastructure of service providers and have to pay for their services. Due to continual advancement in the field of mobile technology, mobile ad-hoc network seems to be more realised than ever using Bluetooth. In traditional mobile ad-hoc networks (MANETs), before information sharing, devices have partial or full knowledge of routes to the destinations using ad-hoc routing protocols. This kind of communication can only be realised if nodes follow the certain pattern. However, in reality mobile ad-hoc networks are highly unpredictable, any node can join or leave network at any time, thus making them risky for effective communication. This issue is addressed by introducing new breed of ad-hoc networking, known as opportunistic networks. Opportunistic networking is a concept that is evolved from mobile ad-hoc networking. In opportunistic networks nodes have no prior knowledge of routes to intended destinations. Any node in the network can be used as potential forwarder with the exception of taking information one step closer to intended destination. The forwarding decision is based on the information gathered from the source node or encountering node. The opportunistic forwarding can only be achieved if message forwarding is carried out in store and forward fashion. Although, opportunistic networks are more flexible than traditional MANETs, however, due to little insight of network, it poses distinct challenges such as intermittent connectivity, variable delays, short connection duration and dynamic topology. Addressing these challenges in opportunistic network is the basis for developing new and efficient protocols for information sharing. The aim of this research is to design different routing/forwarding techniques for opportunistic networks to improve the overall message delivery at destinations while keeping the communication cost very low. Some assumptions are considered to improved directivity of message flow towards intended destinations. These assumptions exploit human social relationships analogies, approximate awareness of the location of nodes in the network and use of hybrid communication by combining several routing concept to gain maximum message directivity. Enhancement in message forwarding in opportunistic networks can be achieved by targeting key nodes that show high degree of influence, popularity or knowledge inside the network. Based on this observation, this thesis presents an improved version of Lobby Influence (LI) algorithm called as Enhanced Lobby Influence (ELI). In LI, the forwarding decision is based on two important factors, popularity of node and popularity of node’s neighbour. The forwarding decision of Enhanced Lobby Influence not only depends on the intermediate node selection criteria as defined in Lobby Influence but also based on the knowledge of previously direct message delivery of intended destination. An improvement can be observed if nodes are aware of approximate position of intended destinations by some communication means such as GPS, GSM or WLAN access points. With the knowledge of nodes position in the network, high message directivity can be achieved by using simple concepts of direction vectors. Based on this observation, this research presents another new algorithm named as Location-aware opportunistic content forwarding (LOC). Last but not least, this research presents an orthodox yet unexplored approach for efficient message forwarding in Bluetooth communication environment, named as Hybrid Content Forwarding (HCF). The new approach combines the characteristics of social centrality based forwarding techniques used in opportunistic networks with traditional MANETs protocols used in Bluetooth scatternets. Simulation results show that a significant increase in delivery radio and cost reduction during content forwarding is observed by deploying these proposed algorithms. Also, comparison with existing technique shows the efficiency of using the new schemes

    ACODV : Ant Colony Optimisation Distance Vector routing in ad hoc networks

    Get PDF
    A mobile ad hoc network is a collection of wireless mobile devices which dynamically form a temporary network, without using any existing network infrastructure or centralised administration. Each node in the network effectively becomes a router, and forwards packets towards the packet’s destination node. Ad hoc networks are characterized by frequently changing network topology, multi-hop wireless connections and the need for dynamic, efficient routing protocols. The overarching requirement for low power consumption, as battery powered sensors may be required to operate for years without battery replacement; An emphasis on reliable communication as opposed to real-time communication, it is more important for packets to arrive reliably than to arrive quickly; and Very scarce processing and memory resources, as these sensors are often implemented on small low-power microprocessors. This work provides overviews of routing protocols in ad hoc networks, swarm intelligence, and swarm intelligence applied to ad hoc routing. Various mechanisms that are commonly encountered in ad hoc routing are experimentally evaluated under situations as close to real-life as possible. Where possible, enhancements to the mechanisms are suggested and evaluated. Finally, a routing protocol suitable for such low-power sensor networks is defined and benchmarked in various scenarios against the Ad hoc On-Demand Distance Vector (AODV) algorithm.Dissertation (MSc)--University of Pretoria, 2005.Computer ScienceUnrestricte
    • …
    corecore