410 research outputs found

    Supervised Control of a Flying Performing Robot using its Intrinsic Sound

    Get PDF
    We present the current results of our ongoing research in achieving efficient control of a flying robot for a wide variety of possible applications. A lightweight small indoor helicopter has been equipped with an embedded system and relatively simple sensors to achieve autonomous stable flight. The controllers have been tuned using genetic algorithms to further enhance flight stability. A number of additional sensors would need to be attached to the helicopter to enable it to sense more of its environment such as its current location or the location of obstacles like the walls of the room it is flying in. The lightweight nature of the helicopter very much restricts the amount of sensors that can be attached to it. We propose utilising the intrinsic sound signatures of the helicopter to locate it and to extract features about its current state, using another supervising robot. The analysis of this information is then sent back to the helicopter using an uplink to enable the helicopter to further stabilise its flight and correct its position and flight path without the need for additional sensors

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Enhancing 3D Autonomous Navigation Through Obstacle Fields: Homogeneous Localisation and Mapping, with Obstacle-Aware Trajectory Optimisation

    Get PDF
    Small flying robots have numerous potential applications, from quadrotors for search and rescue, infrastructure inspection and package delivery to free-flying satellites for assistance activities inside a space station. To enable these applications, a key challenge is autonomous navigation in 3D, near obstacles on a power, mass and computation constrained platform. This challenge requires a robot to perform localisation, mapping, dynamics-aware trajectory planning and control. The current state-of-the-art uses separate algorithms for each component. Here, the aim is for a more homogeneous approach in the search for improved efficiencies and capabilities. First, an algorithm is described to perform Simultaneous Localisation And Mapping (SLAM) with physical, 3D map representation that can also be used to represent obstacles for trajectory planning: Non-Uniform Rational B-Spline (NURBS) surfaces. Termed NURBSLAM, this algorithm is shown to combine the typically separate tasks of localisation and obstacle mapping. Second, a trajectory optimisation algorithm is presented that produces dynamically-optimal trajectories with direct consideration of obstacles, providing a middle ground between path planners and trajectory smoothers. Called the Admissible Subspace TRajectory Optimiser (ASTRO), the algorithm can produce trajectories that are easier to track than the state-of-the-art for flight near obstacles, as shown in flight tests with quadrotors. For quadrotors to track trajectories, a critical component is the differential flatness transformation that links position and attitude controllers. Existing singularities in this transformation are analysed, solutions are proposed and are then demonstrated in flight tests. Finally, a combined system of NURBSLAM and ASTRO are brought together and tested against the state-of-the-art in a novel simulation environment to prove the concept that a single 3D representation can be used for localisation, mapping, and planning

    Artificial evolution of robot bodies and control: on the interaction between evolution, individual and cultural learning

    Get PDF
    We survey and reflect on evolutionary approaches to the joint optimisation of the body and control of a robot, in scenarios where a the goal is to find a design that maximises performance on a specified task. The review is grounded in a general framework for evolution which permits the interaction of evolution acting on a population with individual and cultural learning mechanisms. We discuss examples of variations of the general scheme of "evolution plus learning" from a broad range of robotic systems, and reflect on how the interaction of the two paradigms influences diversity, performance, and rate of improvement. Finally, we suggest a number of avenues for future work as result of the insights that arise from the review

    Optimising Autonomous Robot Swarm Parameters for Stable Formation Design

    Get PDF
    Autonomous robot swarm systems allow to address many inherent limitations of single robot systems, such as scalability and reliability. As a consequence, these have found their way into numerous applications including in the space and aerospace domains like swarm-based asteroid observation or counter-drone systems. However, achieving stable formations around a point of interest using different number of robots and diverse initial conditions can be challenging. In this article we propose a novel method for autonomous robots swarms self-organisation solely relying on their relative position (angle and distance). This work focuses on an evolutionary optimisation approach to calculate the parameters of the swarm, e.g. inter-robot distance, to achieve a reliable formation under different initial conditions. Experiments are conducted using realistic simulations and considering four case studies. The results observed after testing the optimal configurations on 72 unseen scenarios per case study showed the high robustness of our proposal since the desired formation was always achieved. The ability of self-organise around a point of interest maintaining a predefined fixed distance was also validated using real robots

    Mechanism and Behaviour Co-optimisation of High Performance Mobile Robots

    Get PDF
    Mobile robots do not display the level of physical performance one would expect, given the specifications of their hardware. This research is based on the idea that their poor performance is at least partly due to their design, and proposes an optimisation approach for the design of high-performance mobile robots. The aim is to facilitate the design process, and produce versatile and robust robots that can exploit the maximum potential of today's technology. This can be achieved by a systematic optimisation study that is based on careful modelling of the robot's dynamics and its limitations, and takes into consideration the performance requirements that the robot is designed to meet. The approach is divided into two parts: (1) an optimisation framework, and (2) an optimisation methodology. In the framework, designs that can perform a large set of tasks are sought, by simultaneously optimising the design and the behaviours to perform them. The optimisation methodology consists of several stages, where various techniques are used for determining the design's most important parameters, and for maximising the chances of finding the best possible design based on the designer's evaluation criteria. The effectiveness of the optimisation approach is proved via a specific case-study of a high-performance balancing and hopping monopedal robot. The outcome is a robot design and a set of optimal behaviours that can meet several performance requirements of conflicting nature, by pushing the hardware to its limits in a safe way. The findings of this research demonstrate the importance of using realistic models, and taking into consideration the tasks that the robot is meant to perform in the design process
    • …
    corecore