1,476 research outputs found

    Predictive text-entry in immersive environments

    Get PDF
    Virtual Reality (VR) has progressed significantly since its conception, enabling previously impossible applications such as virtual prototyping, telepresence, and augmented reality However, text-entry remains a difficult problem for immersive environments (Bowman et al, 2001b, Mine et al , 1997). Wearing a head-mounted display (HMD) and datagloves affords a wealth of new interaction techniques. However, users no longer have access to traditional input devices such as a keyboard. Although VR allows for more natural interfaces, there is still a need for simple, yet effective, data-entry techniques. Examples include communicating in a collaborative environment, accessing system commands, or leaving an annotation for a designer m an architectural walkthrough (Bowman et al, 2001b). This thesis presents the design, implementation, and evaluation of a predictive text-entry technique for immersive environments which combines 5DT datagloves, a graphically represented keyboard, and a predictive spelling paradigm. It evaluates the fundamental factors affecting the use of such a technique. These include keyboard layout, prediction accuracy, gesture recognition, and interaction techniques. Finally, it details the results of user experiments, and provides a set of recommendations for the future use of such a technique in immersive environments

    Heuristic linear algebraic rank-variance formulation and solution approach for efficient sensor placement

    Get PDF
    The digital age has significantly impacted our ability to sense our environment and infer the state or status of equipment in our environment from the sensed information. Consequently inferring from a set of observations the causal factors that produced them is known as an inverse problem. In this study the sensed information, a.k.a. sensor measurement variables, is measurable while the inferred information, a.k.a. target variables, is not measurable. The ability to solve an inverse problem depends on the quality of the optimisation approach and the relevance of information used to solve the inverse problem. In this study, we aim to improve the information available to solve an inverse problem by considering the optimal selection of m sensors from k options. This study introduces a heuristic approach to solve the sensor placement optimisation problem which is not to be confused with the required optimisation strategy to solve the inverse problem. The proposed heuristic optimisation approach relies on the rank of the cross-covariance matrix between the observations of the target variables and the observations of the sensor measurement variables obtained from simulations using the computational model of an experiment. In addition, the variance between observations of the sensor measurements is considered. A new formulation, namely the tolerance rank-variance formulation (TRVF) is introduced and investigated numerically on a full field deterioration problem. The full field deterioration is estimated for a plate by resolving a parametrisation of the deterioration field for four scenarios. We demonstrate that the optimal sensor locations not only depend on the loading and boundary conditions of the plate but also on the expected ranges for the deterioration parameters. Although the sensor placements are not provably optimal the numerical results clearly indicate computationally efficient near optimal sensor placements.The National Research Foundation (NRF), South Africa and Centre for Asset and Integrity Management (C-AIM), Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria, South Africa.http://www.elsevier.com/locate/engstruct2018-12-15hj2018Mechanical and Aeronautical Engineerin

    Flow Sensors and their Application to Convective Transport of Heat in Logistic Containers

    Get PDF
    Flow measurement has achieved huge strides in the last few decades. This phenomenon is a source that stimulates new applications. Performing an airflow measurement in logistic containers to maintain quality of sensitive products is one of these up-to-date applications. This thesis has two main objectives: First, to prove the suitability of thermal flow sensors for accurate airflow measurements. Second objective is to perform measurements and simulations in order to understand the convective transport inside reefer containers and improve the cooling system efficiency. On the sensor side, basic research studies were performed, including modeling, characterization, calibration, and integration in wireless measurement system. On the application side, several airflow field tests were conducted. Moreover, a simulation model was developed. Experimental results supported the simulation results, wherein both give a good understanding of the airflow and convective transport in the container

    Optimal design of on-scalp electromagnetic sensor arrays for brain source localisation

    Get PDF
    Optically pumped magnetometers (OPMs) are quickly widening the scopes of noninvasive neurophysiological imaging. The possibility of placing these magnetic field sensors on the scalp allows not only to acquire signals from people in movement, but also to reduce the distance between the sensors and the brain, with a consequent gain in the signal-to-noise ratio. These advantages make the technique particularly attractive to characterise sources of brain activity in demanding populations, such as children and patients with epilepsy. However, the technology is currently in an early stage, presenting new design challenges around the optimal sensor arrangement and their complementarity with other techniques as electroencephalography (EEG). In this article, we present an optimal array design strategy focussed on minimising the brain source localisation error. The methodology is based on the Cramér-Rao bound, which provides lower error bounds on the estimation of source parameters regardless of the algorithm used. We utilise this framework to compare whole head OPM arrays with commercially available electro/magnetoencephalography (E/MEG) systems for localising brain signal generators. In addition, we study the complementarity between EEG and OPM-based MEG, and design optimal whole head systems based on OPMs only and a combination of OPMs and EEG electrodes for characterising deep and superficial sources alike. Finally, we show the usefulness of the approach to find the nearly optimal sensor positions minimising the estimation error bound in a given cortical region when a limited number of OPMs are available. This is of special interest for maximising the performance of small scale systems to ad hoc neurophysiological experiments, a common situation arising in most OPM labs

    Optimisation of racing car suspensions featuring inerters

    Get PDF
    Racing car suspensions are a critical system in the overall performance of the vehicle. They must be able to accurately control ride dynamics as well as influencing the handling characteristics of the vehicle and providing stability under the action of external forces. This work is a research study on the design and optimisation of high performance vehicle suspensions using inerters. The starting point is a theoretical investigation of the dynamics of a system fitted with an ideal inerter. This sets the foundation for developing a more complex and novel vehicle suspension model incorporating real inerters. The accuracy and predictability of this model has been assessed and validated against experimental data from 4- post rig testing. In order to maximise overall vehicle performance, a race car suspension must meet a large number of conflicting objectives. Hence, suspension design and optimisation is a complex task where a compromised solution among a set of objectives needs to be adopted. The first task in this process is to define a set of performance based objective functions. The approach taken was to relate the ride dynamic behaviour of the suspension to the overall performance of the race car. The second task of the optimisation process is to develop an efficient and robust optimisation methodology. To address this, a multi-stage optimisation algorithm has been developed. The algorithm is based on two stages, a hybrid surrogate model based multiobjective evolutionary algorithm to obtain a set of non-dominated optimal suspension solutions and a transient lap-time simulation tool to incorporate external factors to the decision process and provide a final optimal solution. A transient lap-time simulation tool has been developed. The minimum time manoeuvring problem has been defined as an Optimal Control problem. A novel solution method based on a multi-level algorithm and a closed-loop driver steering control has been proposed to find the optimal lap time. The results obtained suggest that performance gains can be obtained by incorporating inerters into the suspension system. The work suggests that the use of inerters provides the car with an optimised aerodynamic platform and the overall stability of the vehicle is improved

    Deep probabilistic methods for improved radar sensor modelling and pose estimation

    Get PDF
    Radar’s ability to sense under adverse conditions and at far-range makes it a valuable alternative to vision and lidar for mobile robotic applications. However, its complex, scene-dependent sensing process and significant noise artefacts makes working with radar challenging. Moving past classical rule-based approaches, which have dominated the literature to date, this thesis investigates deep and data-driven solutions across a range of tasks in robotics. Firstly, a deep approach is developed for mapping raw sensor measurements to a grid-map of occupancy probabilities, outperforming classical filtering approaches by a significant margin. A distribution over the occupancy state is captured, additionally allowing uncertainty in predictions to be identified and managed. The approach is trained entirely using partial labels generated automatically from lidar, without requiring manual labelling. Next, a deep model is proposed for generating stochastic radar measurements from simulated elevation maps. The model is trained by learning the forward and backward processes side-by-side, using a combination of adversarial and cyclical consistency constraints in combination with a partial alignment loss, using labels generated in lidar. By faithfully replicating the radar sensing process, new models can be trained for down-stream tasks, using labels that are readily available in simulation. In this case, segmentation models trained on simulated radar measurements, when deployed in the real world, are shown to approach the performance of a model trained entirely on real-world measurements. Finally, the potential of deep approaches applied to the radar odometry task are explored. A learnt feature space is combined with a classical correlative scan matching procedure and optimised for pose prediction, allowing the proposed method to outperform the previous state-of-the-art by a significant margin. Through a probabilistic consideration the uncertainty in the pose is also successfully characterised. Building upon this success, properties of the Fourier Transform are then utilised to separate the search for translation and angle. It is shown that this decoupled search results in a significant boost to run-time performance, allowing the approach to run in real-time on CPUs and embedded devices, whilst remaining competitive with other radar odometry methods proposed in the literature

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    Optimization and Energy Maximizing Control Systems for Wave Energy Converters

    Get PDF
    The book, “Optimization and Energy Maximizing Control Systems for Wave Energy Converters”, presents eleven contributions on the latest scientific advancements of 2020-2021 in wave energy technology optimization and control, including holistic techno-economic optimization, inclusion of nonlinear effects, and real-time implementations of estimation and control algorithms
    • 

    corecore