1,015 research outputs found

    Efficient injection from large telescopes into single-mode fibres: Enabling the era of ultra-precision astronomy

    Get PDF
    Photonic technologies offer numerous advantages for astronomical instruments such as spectrographs and interferometers owing to their small footprints and diverse range of functionalities. Operating at the diffraction-limit, it is notoriously difficult to efficiently couple such devices directly with large telescopes. We demonstrate that with careful control of both the non-ideal pupil geometry of a telescope and residual wavefront errors, efficient coupling with single-mode devices can indeed be realised. A fibre injection was built within the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. Light was coupled into a single-mode fibre operating in the near-IR (J-H bands) which was downstream of the extreme adaptive optics system and the pupil apodising optics. A coupling efficiency of 86% of the theoretical maximum limit was achieved at 1550 nm for a diffraction-limited beam in the laboratory, and was linearly correlated with Strehl ratio. The coupling efficiency was constant to within <30% in the range 1250-1600 nm. Preliminary on-sky data with a Strehl ratio of 60% in the H-band produced a coupling efficiency into a single-mode fibre of ~50%, consistent with expectations. The coupling was >40% for 84% of the time and >50% for 41% of the time. The laboratory results allow us to forecast that extreme adaptive optics levels of correction (Strehl ratio >90% in H-band) would allow coupling of >67% (of the order of coupling to multimode fibres currently). For Strehl ratios <20%, few-port photonic lanterns become a superior choice but the signal-to-noise must be considered. These results illustrate a clear path to efficient on-sky coupling into a single-mode fibre, which could be used to realise modal-noise-free radial velocity machines, very-long-baseline optical/near-IR interferometers and/or simply exploit photonic technologies in future instrument design.Comment: 15 pages, 16 figures, 1 table, published in A&

    Nano-optical sensing and metrology through near-to far-field transduction

    Get PDF

    Smart dimmable LED lighting systems

    Get PDF
    This paper proposes energy-efficient solutions for the smart light-emitting diode (LED) lighting system, which provides minimal energy consumption while simultaneously satisfying illuminance requirements of the users in a typical office space. In addition to artificial light from dimmable LED lamps, natural daylight coming from external sources, such as windows, is considered as a source of illumination in an indoor environment. In order to reduce total energy consumption, the smart LED system has the possibility to dim LED lamps, resulting in reduced LED output power. Additionally, various LED lamps’ functionality, such as semi-angle of the half illuminance and LED tilting, are introduced as an additional parameter to be optimized to achieve greater energy saving of the designed system. In order to properly exploit external lighting, the idea to reduce overall daylight intensity at a users’ location is realized by the option to dim the windows with a shading factor. Based on the users’ requirements for a minimal and desired level of illumination, the proposed optimization problems can be solved by implementing different optimization algorithms. The obtained solutions are able to give instructions to a smart LED system to manage and control system parameters (LEDs dimming levels, semi-angles of the half illuminance, orientation of LEDs, the shading factor) in order to design total illumination, which ensures minimal energy consumption and users’ satisfaction related to illuminance requirements

    Investigation on energy efficiency of lighting system in a university library

    Get PDF
    The electrical lighting system is one of the most significant contributors to energy consumption and operational cost for a library building. The extended operation of the lighting system in the library building consumes a high amount of energy, which requires the adoption of energy efficiency implementation to reduce energy consumption and to overcome energy waste. The objective of this paper is to present the outcomes of investigation on the energy efficiency of the lighting system in a university library building. The lighting system operated in a library building in one of the universities in Malaysia was chosen as the subject of the case study. A semi-structured face to face interview was carried out to interview four respondents who currently in-charge in the lighting system operation of university library building under the study. Looking at the results of the study, the lighting system of the university library is not energy efficient which leads to high energy consumption. To overcome energy waste, the results revealed that a proper guideline for the adoption of energy efficiency and cost-effectiveness of the lighting system is essential to be developed by the university authority for the university library

    Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency

    Get PDF
    Enhanced light harvesting is an area of interest for optimizing both natural photosynthesis and artificial solar energy capture1,2. Iridescence has been shown to exist widely and in diverse forms in plants and other photosynthetic organisms and symbioses3,4, but there has yet to be any direct link demonstrated between iridescence and photosynthesis. Here we show that epidermal chloroplasts, also known as iridoplasts, in shade-dwelling species of Begonia5, notable for their brilliant blue iridescence, have a photonic crystal structure formed from a periodic arrangement of the light-absorbing thylakoid tissue itself. This structure enhances photosynthesis in two ways: by increasing light capture at the predominantly green wavelengths available in shade conditions, and by directly enhancing quantum yield by 5-10% under low-light conditions. These findings together imply that the iridoplast is a highly modified chloroplast structure adapted to make best use of the extremely low-light conditions in the tropical forest understorey in which it is found5,6. A phylogenetically diverse range of shade-dwelling plant species has been found to produce similarly structured chloroplasts7-9, suggesting that the ability to produce chloroplasts whose membranes are organized as a multilayer with photonic properties may be widespread. In fact, given the well-established diversity and plasticity of chloroplasts10,11, our results imply that photonic effects may be important even in plants that do not show any obvious signs of iridescence to the naked eye but where a highly ordered chloroplast structure may present a clear blue reflectance at the microscale. Chloroplasts are generally thought of as purely photochemical; we suggest that one should also think of them as a photonic structure with a complex interplay between control of light propagation, light capture and photochemistry
    • …
    corecore