68 research outputs found

    Optimizing Description Logic Reasoning for the Service Matchmaking and Composition

    Get PDF
    The Semantic Web is a recent initiative to expose semantically rich information associated with Web resources to build more intelligent Web-based systems. Recently, several projects have embraced this vision and there are several successful applications that combine the strengths of the Web and of semantic technologies. However, Semantic Web still lacks a technology, which would provide the needed scalability and integration with existing infrastructure. In this paper we present our ongoing work on a Semantic Web repository, which is capable of addressing complex schemas and answer queries over ontologies with large number of instances. We present the details of our approach and describe the underlying architecture of the system. We conclude with a performance evaluation, which compares the current state-of-the-art reasoners with our system

    Description Logic for Scene Understanding at the Example of Urban Road Intersections

    Get PDF
    Understanding a natural scene on the basis of external sensors is a task yet to be solved by computer algorithms. The present thesis investigates the suitability of a particular family of explicit, formal representation and reasoning formalisms for this task, which are subsumed under the term Description Logic

    Tractable approximate deduction for OWL

    Get PDF
    Acknowledgements This work has been partially supported by the European project Marrying Ontologies and Software Technologies (EU ICT2008-216691), the European project Knowledge Driven Data Exploitation (EU FP7/IAPP2011-286348), the UK EPSRC project WhatIf (EP/J014354/1). The authors thank Prof. Ian Horrocks and Dr. Giorgos Stoilos for their helpful discussion on role subsumptions. The authors thank Rafael S. Gonçalves et al. for providing their hotspots ontologies. The authors also thank BoC-group for providing their ADOxx Metamodelling ontologies.Peer reviewedPostprin

    Benchmarking ontologybased query rewriting systems

    Get PDF
    Query rewriting is a prominent reasoning technique in ontology-based data access applications. A wide variety of query rewriting algorithms have been proposed in recent years and implemented in highly optimised reasoning systems. Query rewriting systems are complex software programs; even if based on provably correct algorithms, sophisticated optimisations make the systems more complex and errors become more likely to happen. In this paper, we present an algorithm that, given an ontology as input, synthetically generates “relevant ” test queries. Intuitively, each of these queries can be used to verify whether the system correctly performs a certain set of “inferences”, each of which can be traced back to axioms in the input ontology. Furthermore, we present techniques that allow us to determine whether a system is unsound and/or incomplete for a given test query and ontology. Our evaluation shows that most publicly available query rewriting systems are unsound and/or incomplete, even on commonly used benchmark ontologies; more importantly, our techniques revealed the precise causes of their correctness issues and the systems were then corrected based on our feedback. Finally, since our evaluation is based on a larger set of test queries than existing benchmarks, which are based on hand-crafted queries, it also provides a better understanding of the scalability behaviour of each system

    Ontology-Based Data Access Using Rewriting, OWL 2 RL Systems and Repairing

    Full text link
    Abstract. In previous work it has been shown how an OWL 2 DL on-tology O can be `repaired ' for an OWL 2 RL system ans|that is, how we can compute a set of axioms R that is independent from the data and such that ans that is generally incomplete for O becomes complete for all SPARQL queries when used with O [ R. However, the initial implementation and experiments were very preliminary and hence it is currently unclear whether the approach can be applied to large and com-plex ontologies. Moreover, the approach so far can only support instance queries. In the current paper we thoroughly investigate repairing as an approach to scalable (and complete) ontology-based data access. First, we present several non-trivial optimisations to the rst prototype. Sec-ond, we show how (arbitrary) conjunctive queries can be supported by integrating well-known query rewriting techniques with OWL 2 RL sys-tems via repairing. Third, we perform an extensive experimental evalua-tion obtaining encouraging results. In more detail, our results show that we can compute repairs even for very large real-world ontologies in a rea-sonable amount of time, that the performance overhead introduced by repairing is negligible in small to medium sized ontologies and noticeable but manageable in large and complex one, and that the hybrid reasoning approach can very eciently compute the correct answers for real-world challenging scenarios.
    • …
    corecore