925 research outputs found

    Research and developments of distributed video coding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The recent developed Distributed Video Coding (DVC) is typically suitable for the applications such as wireless/wired video sensor network, mobile camera etc. where the traditional video coding standard is not feasible due to the constrained computation at the encoder. With DVC, the computational burden is moved from encoder to decoder. The compression efficiency is achieved via joint decoding at the decoder. The practical application of DVC is referred to Wyner-Ziv video coding (WZ) where the side information is available at the decoder to perform joint decoding. This join decoding inevitably causes a very complex decoder. In current WZ video coding issues, many of them emphasise how to improve the system coding performance but neglect the huge complexity caused at the decoder. The complexity of the decoder has direct influence to the system output. The beginning period of this research targets to optimise the decoder in pixel domain WZ video coding (PDWZ), while still achieves similar compression performance. More specifically, four issues are raised to optimise the input block size, the side information generation, the side information refinement process and the feedback channel respectively. The transform domain WZ video coding (TDWZ) has distinct superior performance to the normal PDWZ due to the exploitation in spatial direction during the encoding. However, since there is no motion estimation at the encoder in WZ video coding, the temporal correlation is not exploited at all at the encoder in all current WZ video coding issues. In the middle period of this research, the 3D DCT is adopted in the TDWZ to remove redundancy in both spatial and temporal direction thus to provide even higher coding performance. In the next step of this research, the performance of transform domain Distributed Multiview Video Coding (DMVC) is also investigated. Particularly, three types transform domain DMVC frameworks which are transform domain DMVC using TDWZ based 2D DCT, transform domain DMVC using TDWZ based on 3D DCT and transform domain residual DMVC using TDWZ based on 3D DCT are investigated respectively. One of the important applications of WZ coding principle is error-resilience. There have been several attempts to apply WZ error-resilient coding for current video coding standard e.g. H.264/AVC or MEPG 2. The final stage of this research is the design of WZ error-resilient scheme for wavelet based video codec. To balance the trade-off between error resilience ability and bandwidth consumption, the proposed scheme emphasises the protection of the Region of Interest (ROI) area. The efficiency of bandwidth utilisation is achieved by mutual efforts of WZ coding and sacrificing the quality of unimportant area. In summary, this research work contributed to achieves several advances in WZ video coding. First of all, it is targeting to build an efficient PDWZ with optimised decoder. Secondly, it aims to build an advanced TDWZ based on 3D DCT, which then is applied into multiview video coding to realise advanced transform domain DMVC. Finally, it aims to design an efficient error-resilient scheme for wavelet video codec, with which the trade-off between bandwidth consumption and error-resilience can be better balanced

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    Improved quality block-based low bit rate video coding.

    Get PDF
    The aim of this research is to develop algorithms for enhancing the subjective quality and coding efficiency of standard block-based video coders. In the past few years, numerous video coding standards based on motion-compensated block-transform structure have been established where block-based motion estimation is used for reducing the correlation between consecutive images and block transform is used for coding the resulting motion-compensated residual images. Due to the use of predictive differential coding and variable length coding techniques, the output data rate exhibits extreme fluctuations. A rate control algorithm is devised for achieving a stable output data rate. This rate control algorithm, which is essentially a bit-rate estimation algorithm, is then employed in a bit-allocation algorithm for improving the visual quality of the coded images, based on some prior knowledge of the images. Block-based hybrid coders achieve high compression ratio mainly due to the employment of a motion estimation and compensation stage in the coding process. The conventional bit-allocation strategy for these coders simply assigns the bits required by the motion vectors and the rest to the residual image. However, at very low bit-rates, this bit-allocation strategy is inadequate as the motion vector bits takes up a considerable portion of the total bit-rate. A rate-constrained selection algorithm is presented where an analysis-by-synthesis approach is used for choosing the best motion vectors in term of resulting bit rate and image quality. This selection algorithm is then implemented for mode selection. A simple algorithm based on the above-mentioned bit-rate estimation algorithm is developed for the latter to reduce the computational complexity. For very low bit-rate applications, it is well-known that block-based coders suffer from blocking artifacts. A coding mode is presented for reducing these annoying artifacts by coding a down-sampled version of the residual image with a smaller quantisation step size. Its applications for adaptive source/channel coding and for coding fast changing sequences are examined

    Open-Source Telemedicine Platform for Wireless Medical Video Communication

    Get PDF
    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings

    A two-stage approach for robust HEVC coding and streaming

    Get PDF
    The increased compression ratios achieved by the High Efficiency Video Coding (HEVC) standard lead to reduced robustness of coded streams, with increased susceptibility to network errors and consequent video quality degradation. This paper proposes a method based on a two-stage approach to improve the error robustness of HEVC streaming, by reducing temporal error propagation in case of frame loss. The prediction mismatch that occurs at the decoder after frame loss is reduced through the following two stages: (i) at the encoding stage, the reference pictures are dynamically selected based on constraining conditions and Lagrangian optimisation, which distributes the use of reference pictures, by reducing the number of prediction units (PUs) that depend on a single reference; (ii) at the streaming stage, a motion vector (MV) prioritisation algorithm, based on spatial dependencies, selects an optimal sub-set of MVs to be transmitted, redundantly, as side information to reduce mismatched MV predictions at the decoder. The simulation results show that the proposed method significantly reduces the effect of temporal error propagation. Compared to the reference HEVC, the proposed reference picture selection method is able to improve the video quality at low packet loss rates (e.g., 1%) using the same bitrate, achieving quality gains up to 2.3 dB for 10% of packet loss ratio. It is shown, for instance, that the redundant MVs are able to boost the performance achieving quality gains of 3 dB when compared to the reference HEVC, at the cost using 4% increase in total bitrate

    Adaptive delivery of immersive 3D multi-view video over the Internet

    Get PDF
    The increase in Internet bandwidth and the developments in 3D video technology have paved the way for the delivery of 3D Multi-View Video (MVV) over the Internet. However, large amounts of data and dynamic network conditions result in frequent network congestion, which may prevent video packets from being delivered on time. As a consequence, the 3D video experience may well be degraded unless content-aware precautionary mechanisms and adaptation methods are deployed. In this work, a novel adaptive MVV streaming method is introduced which addresses the future generation 3D immersive MVV experiences with multi-view displays. When the user experiences network congestion, making it necessary to perform adaptation, the rate-distortion optimum set of views that are pre-determined by the server, are truncated from the delivered MVV streams. In order to maintain high Quality of Experience (QoE) service during the frequent network congestion, the proposed method involves the calculation of low-overhead additional metadata that is delivered to the client. The proposed adaptive 3D MVV streaming solution is tested using the MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH) standard. Both extensive objective and subjective evaluations are presented, showing that the proposed method provides significant quality enhancement under the adverse network conditions

    Complexity management of H.264/AVC video compression.

    Get PDF
    The H. 264/AVC video coding standard offers significantly improved compression efficiency and flexibility compared to previous standards. However, the high computational complexity of H. 264/AVC is a problem for codecs running on low-power hand held devices and general purpose computers. This thesis presents new techniques to reduce, control and manage the computational complexity of an H. 264/AVC codec. A new complexity reduction algorithm for H. 264/AVC is developed. This algorithm predicts "skipped" macroblocks prior to motion estimation by estimating a Lagrange ratedistortion cost function. Complexity savings are achieved by not processing the macroblocks that are predicted as "skipped". The Lagrange multiplier is adaptively modelled as a function of the quantisation parameter and video sequence statistics. Simulation results show that this algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. The complexity reduction algorithm is further developed to achieve complexity-scalable control of the encoding process. The Lagrangian cost estimation is extended to incorporate computational complexity. A target level of complexity is maintained by using a feedback algorithm to update the Lagrange multiplier associated with complexity. Results indicate that scalable complexity control of the encoding process can be achieved whilst maintaining near optimal complexity-rate-distortion performance. A complexity management framework is proposed for maximising the perceptual quality of coded video in a real-time processing-power constrained environment. A real-time frame-level control algorithm and a per-frame complexity control algorithm are combined in order to manage the encoding process such that a high frame rate is maintained without significantly losing frame quality. Subjective evaluations show that the managed complexity approach results in higher perceptual quality compared to a reference encoder that drops frames in computationally constrained situations. These novel algorithms are likely to be useful in implementing real-time H. 264/AVC standard encoders in computationally constrained environments such as low-power mobile devices and general purpose computers

    Secure and Efficient Video Transmission in VANET

    Get PDF
    Currently, vehicular communications have become a reality used by various applications, especially applications that broadcast video in real time. However, the video quality received is penalized by the poor characteristics of the transmission channel (availability, non-stationarity, the ration of signal-to-noise, etc.). To improve and ensure minimum video quality at reception, we propose in this work a mechanism entitled “Secure and Efficient Transmission of Videos in VANET (SETV)”. It's based on the "Quality of Experience (QoE)" and using hierarchical packet management. This last is based on the importance of the images of the stream video. To this end, the use of transmission error correction with uneven error protection has proven to be effective in delivering high quality videos with low network overhead. This is done based on the specific details of video encoding and actual network conditions such as signal to noise ratio, network density, vehicle position and current packet loss rate (PLR) not to mention the prediction of the future DPP.Machine learning models were developed on our work to estimate perceived audio-visual quality. The protocol previously gathers information about its neighbouring vehicles to perform distributed jump reinforcement learning. The simulation results obtained for several types of realistic vehicular scenarios show that our proposed mechanism offers significant improvements in terms of video quality on reception and end-to-end delay compared to conventional schemes. The results prove that the proposed mechanism has showed 11% to 18% improvement in video quality and 9% load gain compared to ShieldHEVC

    Dynamic adaptation of streamed real-time E-learning videos over the internet

    Get PDF
    Even though the e-learning is becoming increasingly popular in the academic environment, the quality of synchronous e-learning video is still substandard and significant work needs to be done to improve it. The improvements have to be brought about taking into considerations both: the network requirements and the psycho- physical aspects of the human visual system. One of the problems of the synchronous e-learning video is that the head-and-shoulder video of the instructor is mostly transmitted. This video presentation can be made more interesting by transmitting shots from different angles and zooms. Unfortunately, the transmission of such multi-shot videos will increase packet delay, jitter and other artifacts caused by frequent changes of the scenes. To some extent these problems may be reduced by controlled reduction of the quality of video so as to minimise uncontrolled corruption of the stream. Hence, there is a need for controlled streaming of a multi-shot e-learning video in response to the changing availability of the bandwidth, while utilising the available bandwidth to the maximum. The quality of transmitted video can be improved by removing the redundant background data and utilising the available bandwidth for sending high-resolution foreground information. While a number of schemes exist to identify and remove the background from the foreground, very few studies exist on the identification and separation of the two based on the understanding of the human visual system. Research has been carried out to define foreground and background in the context of e-learning video on the basis of human psychology. The results have been utilised to propose methods for improving the transmission of e-learning videos. In order to transmit the video sequence efficiently this research proposes the use of Feed- Forward Controllers that dynamically characterise the ongoing scene and adjust the streaming of video based on the availability of the bandwidth. In order to satisfy a number of receivers connected by varied bandwidth links in a heterogeneous environment, the use of Multi-Layer Feed-Forward Controller has been researched. This controller dynamically characterises the complexity (number of Macroblocks per frame) of the ongoing video sequence and combines it with the knowledge of availability of the bandwidth to various receivers to divide the video sequence into layers in an optimal way before transmitting it into network. The Single-layer Feed-Forward Controller inputs the complexity (Spatial Information and Temporal Information) of the on-going video sequence along with the availability of bandwidth to a receiver and adjusts the resolution and frame rate of individual scenes to transmit the sequence optimised to give the most acceptable perceptual quality within the bandwidth constraints. The performance of the Feed-Forward Controllers have been evaluated under simulated conditions and have been found to effectively regulate the streaming of real-time e-learning videos in order to provide perceptually improved video quality within the constraints of the available bandwidth
    corecore