25 research outputs found

    A toolbox to quickly prepare flood inundation models for LISFLOOD-FP simulations

    Get PDF
    Hydrodynamic floodplain inundation models have been popular for many years and used extensively in engineering applications. Continental scale flood studies are now achievable using such models due to the development of terrain elevation, hydrography and river width datasets with global coverage. However, deploying flood models at any scale is time-consuming since input data needs to be processed from different sources. Here we present LFPtools, which is an open-source Python package which encompasses most commonly used methods to prepare input data for large scale flood inundation studies using the LISFLOOD-FP hydrodynamic model. LFPtools performance was verified over the Severn basin in the UK where a 1 km flood inundation model was built within 1.45 min. Outputs of the test case were compared with the official flood extent footprint of a real event and satisfactory model performance was obtained: Hit rate = 0.79, False alarm ratio = 0.24 and Critical success index = 0.63

    Gaussian Process emulation of spatiotemporal outputs of a 2D inland flood model

    Get PDF
    The computational limitations of complex numerical models have led to adoption of statistical emulators across a variety of problems in science and engineering disciplines to circumvent the high computational costs associated with numerical simulations. In flood modelling, many hydraulic and hydrodynamic numerical models, especially when operating at high spatiotemporal resolutions, have prohibitively high computational costs for tasks requiring the instantaneous generation of very large numbers of simulation results. This study examines the appropriateness and robustness of Gaussian Process (GP) models to emulate the results from a hydraulic inundation model. The developed GPs produce real-time predictions based on the simulation output from LISFLOOD-FP numerical model. An efficient dimensionality reduction scheme is developed to tackle the high dimensionality of the output space and is combined with the GPs to investigate the predictive performance of the proposed emulator for estimation of the inundation depth. The developed GP-based framework is capable of robust and straightforward quantification of the uncertainty associated with the predictions, without requiring additional model evaluations and simulations. Further, this study explores the computational advantages of using a GP-based emulator over alternative methodologies such as neural networks, by undertaking a comparative analysis. For the case study data presented in this paper, the GP model was found to accurately reproduce water depths and inundation extent by classification and produce computational speedups of approximately 10,000 times compared with the original simulator, and 80 times for a neural network-based emulator

    Friction decoupling and loss of rotational invariance in flooding models

    Full text link
    Friction decoupling, i.e. the computation of friction vector components making separate use of the corresponding velocity components, is common in staggered grid models of the SWE simplifications (Zero-Inertia and Local Inertia Approximation), due to the programming simplicity and to the consequent calculations speed-up. In the present paper, the effect of friction decoupling has been studied from the theoretical and numerical point of view. First, it has been found that friction vector decoupling causes the reduction of the computed friction force and the rotation of the friction force vector. Second, it has been demonstrated that decoupled-friction models lack of rotational invariance, i.e. model results depend on the alignment of the reference framework. These theoretical results have been confirmed by means of numerical experiments. On this basis, it is evident that the decoupling of the friction vector causes a major loss of credibility of the corresponding mathematical and numerical models. Despite the modest speed-up of decoupled-friction computations, classic coupled-friction models should be preferred in every case

    LISFLOOD-FP 8.1: new GPU-accelerated solvers for faster fluvial/pluvial flood simulations

    Get PDF
    The local inertial two-dimensional (2D) flow model on LISFLOOD-FP, the so-called ACCeleration (ACC) uniform grid solver, has been widely used to support fast, computationally efficient fluvial/pluvial flood simulations. This paper describes new releases, on LISFLOOD-FP 8.1, for parallelised flood simulations on the graphical processing units (GPUs) to boost efficiency of the existing parallelised ACC solver on the central processing units (CPUs) and enhance it further by enabling a new non-uniform grid version. The non-uniform solver generates its grid using the multiresolution analysis (MRA) of the multiwavelets (MWs) to a Galerkin polynomial projection of the digital elevation model (DEM). This sensibly coarsens the resolutions where the local topographic details are below an error threshold ε and allows classes of land use to be properly adapted. Both the grid generator and the adapted ACC solver on the non-uniform grid are implemented in a GPU new codebase, using the indexing of Z-order curves alongside a parallel tree traversal approach. The efficiency performance of the GPU parallelised uniform and non-uniform grid solvers is assessed for five case studies, where the accuracy of the latter is explored for and 10−3 in terms of how close it can reproduce the prediction of the former. On the GPU, the uniform ACC solver is found to be 2–28 times faster than the CPU predecessor with increased number of elements on the grid, and the non-uniform solver can further increase the speed up to 320 times with increased reduction in the grid's elements and decreased variability in the resolution. LISFLOOD-FP 8.1, therefore, allows faster flood inundation modelling to be performed at both urban and catchment scales. It is openly available under the GPL v3 license, with additional documentation at https://www.seamlesswave.com/LISFLOOD8.0 (last access: 12 March 2023)

    LISFLOOD-FP 8.0 : the new discontinuous Galerkin shallow-water solver for multi-core CPUs and GPUs

    Get PDF
    LISFLOOD-FP 8.0 includes second-order discontinuous Galerkin (DG2) and first-order finite-volume (FV1) solvers of the two-dimensional shallow-water equations for modelling a wide range of flows, including rapidly propagating, supercritical flows, shock waves or flows over very smooth surfaces. The solvers are parallelised on multi-core CPU and Nvidia GPU architectures and run existing LISFLOOD-FP modelling scenarios without modification. These new, fully two-dimensional solvers are available alongside the existing local inertia solver (called ACC), which is optimised for multi-core CPUs and integrates with the LISFLOOD-FP sub-grid channel model. The predictive capabilities and computational scalability of the new DG2 and FV1 solvers are studied for two Environment Agency benchmark tests and a real-world fluvial flood simulation driven by rainfall across a 2500 km2 catchment. DG2's second-order-accurate, piecewise-planar representation of topography and flow variables enables predictions on coarse grids that are competitive with FV1 and ACC predictions on 2–4 times finer grids, particularly where river channels are wider than half the grid spacing. Despite the simplified formulation of the local inertia solver, ACC is shown to be spatially second-order-accurate and yields predictions that are close to DG2. The DG2-CPU and FV1-CPU solvers achieve near-optimal scalability up to 16 CPU cores and achieve greater efficiency on grids with fewer than 0.1 million elements. The DG2-GPU and FV1-GPU solvers are most efficient on grids with more than 1 million elements, where the GPU solvers are 2.5–4 times faster than the corresponding 16-core CPU solvers. LISFLOOD-FP 8.0 therefore marks a new step towards operational DG2 flood inundation modelling at the catchment scale. LISFLOOD-FP 8.0 is freely available under the GPL v3 license, with additional documentation and case studies at https://www.seamlesswave.com/LISFLOOD8.0 (last access: 2 June 2021)

    Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations

    Get PDF
    Nature-based solutions (NBS) for hydro-meteorological risks (HMRs) reduction and management are becoming increasingly popular, but challenges such as the lack of well-recognised standard methodologies to evaluate their performance and upscale their implementation remain. We systematically evaluate the current state-of-the art on the models and tools that are utilised for the optimum allocation, design and efficiency evaluation of NBS for five HMRs (flooding, droughts, heatwaves, landslides, and storm surges and coastal erosion). We found that methods to assess the complex issue of NBS efficiency and cost-benefits analysis are still in the development stage and they have only been implemented through the methodologies developed for other purposes such as fluid dynamics models in micro and catchment scale contexts. Of the reviewed numerical models and tools MIKE-SHE, SWMM (for floods), ParFlow-TREES, ACRU, SIMGRO (for droughts), WRF, ENVI-met (for heatwaves), FUNWAVE-TVD, BROOK90 (for landslides), TELEMAC and ADCIRC (for storm surges) are more flexible to evaluate the performance and effectiveness of specific NBS such as wetlands, ponds, trees, parks, grass, green roof/walls, tree roots, vegetations, coral reefs, mangroves, sea grasses, oyster reefs, sea salt marshes, sandy beaches and dunes. We conclude that the models and tools that are capable of assessing the multiple benefits, particularly the performance and cost-effectiveness of NBS for HMR reduction and management are not readily available. Thus, our synthesis of modelling methods can facilitate their selection that can maximise opportunities and refute the current political hesitation of NBS deployment compared with grey solutions for HMR management but also for the provision of a wide range of social and economic co-benefits. However, there is still a need for bespoke modelling tools that can holistically assess the various components of NBS from an HMR reduction and management perspective. Such tools can facilitate impact assessment modelling under different NBS scenarios to build a solid evidence base for upscaling and replicating the implementation of NBS

    Nature-based solutions efficiency evaluation against natural hazards: modelling methods, advantages and limitations

    Get PDF
    Nature-based solutions (NBS) for hydro-meteorological risks (HMRs) reduction and management are becoming increasingly popular, but challenges such as the lack of well-recognised standard methodologies to evaluate their performance and upscale their implementation remain. We systematically evaluate the current state-of-the art on the models and tools that are utilised for the optimum allocation, design and efficiency evaluation of NBS for five HMRs (flooding, droughts, heatwaves, landslides, and storm surges and coastal erosion). We found that methods to assess the complex issue of NBS efficiency and cost-benefits analysis are still in the development stage and they have only been implemented through the methodologies developed for other purposes such as fluid dynamics models in micro and catchment scale contexts. Of the reviewed numerical models and tools MIKE-SHE, SWMM (for floods), ParFlow-TREES, ACRU, SIMGRO (for droughts), WRF, ENVI-met (for heatwaves), FUNWAVE-TVD, BROOK90 (for landslides), TELEMAC and ADCIRC (for storm surges) are more flexible to evaluate the performance and effectiveness of specific NBS such as wetlands, ponds, trees, parks, grass, green roof/walls, tree roots, vegetations, coral reefs, mangroves, sea grasses, oyster reefs, sea salt marshes, sandy beaches and dunes. We conclude that the models and tools that are capable of assessing the multiple benefits, particularly the performance and cost-effectiveness of NBS for HMR reduction and management are not readily available. Thus, our synthesis of modelling methods can facilitate their selection that can maximise opportunities and refute the current political hesitation of NBS deployment compared with grey solutions for HMR management but also for the provision of a wide range of social and economic co-benefits. However, there is still a need for bespoke modelling tools that can holistically assess the various components of NBS from an HMR reduction and management perspective. Such tools can facilitate impact assessment modelling under different NBS scenarios to build a solid evidence base for upscaling and replicating the implementation of NBS
    corecore