62 research outputs found

    Optimisation of spatial CSMA using a simple stochastic geometry model for 1D and 2D networks

    Get PDF
    International audienceIn modern wireless networks especially in Machine-to-Machine (M2M) systems and in the Internet of Things (IoT) there is a high densities of users and spatial reuse has become an absolute necessity for telecommunication entities. This paper studies the maximum throughput of Carrier Sense Multiple Access (CSMA) in scenarios with spatial reuse. Instead of running extensive simulation with complex tools which would be somewhat time consuming, we evaluate the spatial throughput of a CSMA network using a simple model which produces closed formulas and give nearly instantaneous values. This simple model allows us to optimize the network easily and study the influence of the main network parameters. The nodes will be deployed as a Poisson Point Process (PPP) of a one or two dimensional space. To model the effect of (CSMA), we give random marks to our nodes and to elect transmitting nodes in the PPP we choose those with the smallest marks in their neighborhood. To describe the signal propagation, we use a signal with power-law decay and we add a random Rayleigh fading. To decide whether or not a transmission is successful, we adopt the Signal-over-Interference Ratio (SIR) model in which a packet is correctly received if its transmission power divided by the interference power is above a capture threshold. We assume that each node in our PPP has a random receiver at a typical distance from the transmitter i.e. the average distance between a node and its closest neighbor. We also assume that all the network nodes always have a pending packet. With all these assumptions, we analytically study the density of throughput of successful transmissions and we show that it can be optimized with regard to the carrier-sense threshold

    Predicting transmission success with Machine-Learning and Support Vector Machine in VANETs

    Get PDF
    International audienceIn this article we study the use of the Support Vector Machine technique to estimate the probability of the reception of a given transmission in a Vehicular Ad hoc NETwork (VANET). The transmission takes place between a vehicle and a RoadSide Unit (RSU) at a given distance and with a given transmission rate. The RSU computes the statistics of the receptions and is able to compute the percentage of successful transmissions versus the distance between the vehicle and the RSU and the transmission rate. Starting from this statistic, a Support Vector Machine (SVM) scheme can produce a model. Then, given a transmission rate and a distance between the vehicle and the RSU, the SVM technique can estimate the probability of a succcessful reception. This probability can be used to build an adaptive technique which optimizes the expected throughput between the vehicle and the RSU. Instead of using transmission values of a real experiment, we use the results of an analytical model of CSMA that is customized for 1D VANETs. The model we adopt to perform this task uses a Matern selection process to mimic the transmission in a CSMA IEEE 802.11p VANET. With this model we obtain a closed formula for the probability of successful transmissions. Thus with these results we can train an SVM model and predict other values for other couples : distance, transmission rate. The numerical results we obtain show that SVM seems very suitable to predict the reception probability in a VANET

    Topology control and data handling in wireless sensor networks

    Get PDF
    Our work in this thesis have provided two distinctive contributions to WSNs in the areas of data handling and topology control. In the area of data handling, we have demonstrated a solution to improve the power efficiency whilst preserving the important data features by data compression and the use of an adaptive sampling strategy, which are applicable to the specific application for oceanography monitoring required by the SECOAS project. Our work on oceanographic data analysis is important for the understanding of the data we are dealing with, such that suitable strategies can be deployed and system performance can be analysed. The Basic Adaptive Sampling Scheduler (BASS) algorithm uses the statistics of the data to adjust the sampling behaviour in a sensor node according to the environment in order to conserve energy and minimise detection delay. The motivation of topology control (TC) is to maintain the connectivity of the network, to reduce node degree to ease congestion in a collision-based medium access scheme; and to reduce power consumption in the sensor nodes. We have developed an algorithm Subgraph Topology Control (STC) that is distributed and does not require additional equipment to be implemented on the SECOAS nodes. STC uses a metric called subgraph number, which measures the 2-hops connectivity in the neighbourhood of a node. It is found that STC consistently forms topologies that have lower node degrees and higher probabilities of connectivity, as compared to k-Neighbours, an alternative algorithm that does not rely on special hardware on sensor node. Moreover, STC also gives better results in terms of the minimum degree in the network, which implies that the network structure is more robust to a single point of failure. As STC is an iterative algorithm, it is very scalable and adaptive and is well suited for the SECOAS applications

    Interference Coordination in Heterogeneous Networks: Stochastic Geometry Based Modelling and Performance Analysis

    Get PDF
    Recently data traffic has experienced explosive increase with the proliferation of wireless devices and the popularity of media-based free services. The academic and industry of mobile communications have predicted an estimated 10001000x increase in traffic volume for the forthcoming 5G networks. This traffic explosion stimulates the deployment of heterogeneous networks (HetNets) with small cells (SCs) underlying in the traditional macrocells, which has been considered as a promising technique to contribute to the 10001000x traffic capacity gain. Initially, licensed spectrum bands are expected to be used in SCs, thus the SC deployment introduces the cross-tier interference between SCs and macrocells, which degrades the downlink signal to interference plus noise ratio (SINR) of user equipments (UEs) severely, especially for the edge UEs in a ultra-densely deployed scenario. To alleviate this cross-tier interference between SCs and macrocells, unlicensed spectrum bands are advocated to be used in SCs. Specifically, with the aid of carrier aggregation, the 55 gigahertz (GHz) unlicensed band has become an option for SCs in the Long Term Evolution (LTE)-Unlicensed (LTE-U) scheme, but the 55 Ghz unlicensed band has already been used by WiFi networks. Thus downlink cross-tier interference also occurs between LTE-U and WiFi networks. Accordingly, downlink cross-tier interference is inevitable no matter licensed or unlicensed spectrum band (i.e., 5 GHz) is used in SCs, and interference coordination schemes, such as further enhanced inter-cell interference coordination (FeICIC) for macrocells and SCs, and Licensed Assisted Access (LAA) for WiFi networks and LTE-U networks, have been proposed to mitigate these cross-tier interferences. In this dissertation, we mainly focus on the modelling and performance analysis of HetNets with the aforementioned two interference coordination schemes (i.e., FeICIC and LTE-LAA) under the stochastic geometry framework. Firstly, as the configuration of reduced power subframe (RPS)-related parameters was not well investigated in a two-tier HetNet adopting RPSs and cell range expansion (CRE), we derive the analytical expressions of the downlink coverage probability and rate coverage probability in such a HetNet. The optimal settings for the area of macrocell center regions, the area of SC range expansion regions, and the transmit power of RPSs for maximizing the rate coverage probability are analysed. As compared with the rate coverage probability in the two-tier HetNet with almost blank subframes (ABSs), which is proposed in the previous version of FeICIC, i.e., the enhanced inter-cell interference coordination (eICIC), the results show that ABSs outperform RPSs in terms of the rate coverage probability in the two-tier HetNet with the optimal range expansion bias, but lead to a heavier burden on the SC backhaul. However, with static typical range expansion biases, RPSs provide better rate coverage probability than ABSs in the two-tier HetNet. Secondly, the conventional FeICIC scheme ignores the potential of RPSs being adopted in both tiers of a two-tier HetNet without CRE, which is envisioned to improve the SINR level of edge UEs in both tiers. Accordingly, we study the downlink coverage probability and rate coverage probability of a two-tier HetNet applying with our proposed scheme. The results reveal that adopting RPSs in both tiers not only improves the coverage probabilities of edge UEs, but also increases the rate coverage probability of the whole two-tier HetNet. Thirdly, in both previous works, strict subframe alignment (SA) was assumed throughout the whole network, which is difficult to maintain between neighbouring cells in reality. Consequently, we propose a novel subframe misalignment (SM) model for a two-tier HetNet adopting RPSs with SM offsets restricted within a subframe duration, and analyse the coverage probability under the effects of RPSs and SM. The numerical results indicate that the strict SA requirement can be relaxed by up to 20%20\% of the subframe duration with a loss of below 5%5\% in terms of the downlink coverage probability. Lastly, since stochastic-geometry-based analysis of the coexisting LTE-LAA and WiFi networks, which adopt the carrier-sense multiple access with collision avoidance (CSMA/CA) as the medium access control (MAC) scheme and share multiple unlicensed channels (UCs), was missing, we analyse the downlink throughput and spectral efficiency (SE) of the coexisting LTE-LAA and WiFi networks versus the network density and the number of UCs based on the Matern hard core process. The throughput and SE are obtained as functions of the downlink successful transmission probability (STP), of which analytical expressions are derived for both LTE-LAA and WiFi UEs. The results show that the throughput and SE of the whole coexisting LTE-LAA and WiFi networks can be improved significantly with an increasing number of accessible UCs. Based on the numerical results, insights into the trade-off between the throughput and SE against the number of accessible UCs are provided. All the derived results have been validated by Monte Carlo simulation in Matlab, and the conclusions observed from the results can provide guidelines for the future deployments of the FeICIC and LTE-LAA interference coordination schemes in HetNets

    Connectivity and Mobility in Wireless Networks

    Get PDF

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Interference modelling and management for cognitive radio networks

    Get PDF
    Radio spectrum is becoming increasingly scarce as more and more devices go wireless. Meanwhile, studies indicate that the assigned spectrum is not fully utilised. Cognitive radio (CR) technology is envisioned to be a promising solution to address the imbalance between spectrum scarcity and spectrum underutilisation. It improves the spectrum utilisation by reusing the unused or underutilised spectrum owned by incumbent systems (primary systems). With the introduction of CR networks, two types of interference originating from CR networks are introduced. They are the interference from CR to primary networks (CR-primary interference) and the interference among spectrum-sharing CR nodes (CR-CR interference). The interference should be well controlled and managed in order not to jeopardise the operation of the primary network and to improve the performance of CR systems. This thesis investigates the interference in CR networks by modelling and mitigating the CR-primary interference and analysing the CR-CR interference channels. Firstly, the CR-primary interference is modelled for multiple CR nodes sharing the spectrum with the primary system. The probability density functions of CR-primary interference are derived for CR networks adopting different interference management schemes. The relationship between CR operating parameters and the resulting CRprimary interference is investigated. It sheds light on the deployment of CR networks to better protect the primary system. Secondly, various interference mitigation techniques that are applicable to CR networks are reviewed. Two novel precoding schemes for CR multiple-input multipleoutput (MIMO) systems are proposed to mitigate the CR-primary interference and maximise the CR throughput. To further reduce the CR-primary interference, we also approach interference mitigation from a cross-layer perspective by jointly considering channel allocation in the media access control layer and precoding in the physical layer of CR MIMO systems. Finally, we analyse the underlying interference channels among spectrum-sharing CR users when they interfere with each other. The Pareto rate region for multi-user MIMO interference systems is characterised. Various rate region convexification schemes are examined to convexify the rate region. Then, game theory is applied to the interference system to coordinate the operation of each CR user. Nash bargaining over MIMO interference systems is characterised as well. The research presented in this thesis reveals the impact of CR operation on the resulting CR-primary network, how to mitigate the CR-primary interference and how to coordinate the spectrum-sharing CR users. It forms the fundamental basis for interference management in CR systems and consequently gives insights into the design and deployment of CR networks

    Device-to-device communication in cellular networks : multi-hop path selection and performance.

    Get PDF
    Over the past decade, the proliferation of internet equipment and an increasing number of people moving into cities have significantly influenced mobile data demand density and intensity. To accommodate the increasing demands, the fifth generation (5G) wireless systems standards emerged in 2014. Device-to-device communications (D2D) is one of the three primary technologies to address the key performance indicators of the 5G network. D2D communications enable devices to communicate data information directly with each other without access to a fixed wireless infrastructure. The potential advantages of D2D communications include throughput enhancement, device energy saving and coverage expansion. The economic attraction to mobile operators is that significant capacity and coverage gains can be achieved without having to invest in network-side hardware upgrades or new cell deployments. However, there are technical challenges related to D2D and conventional cellular communication (CC) in co-existence, especially their mutual interference due to spectrum sharing. A novel interference-aware-routing for multi-hop D2D is introduced for reducing the mutual interference. The first verification scenario of interference-aware-routing is that in a real urban environment. D2D is used for relaying data across the urban terrain, in the presence of CC communications. Different wireless routing algorithms are considered, namely: shortest-path-routing, interference-aware-routing, and broadcast-routing. In general, the interference-aware-routing achieves a better performance of reliability and there is a fundamental trade-off between D2D and CC outage performances, due to their mutual interference relationship. Then an analytical stochastic geometry framework is developed to compare the performance of shortest-path-routing and interference-aware-routing. Based on the results, the spatial operational envelopes for different D2D routing algorithms and CC transmissions based on the user equipment (UEs) physical locations are defined. There is a forbidden area of D2D because of the interference from the base stations (BSs), so the collision probability of the D2D multi-hop path hitting the defined D2D forbidden area is analysed. Depend on the result of the collision probability, a dynamic switching strategy between D2D and CC communications in order to minimise mutual interference is proposed. A blind gradient-based transmission switching strategy is developed to avoid collision within the collision area and only requires knowledge of the distances to the serving base station of the current user and the final destination user. In the final part of my research, the concept of LTE-U (Long term evolution for Unlicensed Spectrum), which suggests that LTE can operate in the unlicensed spectrum with significant modifications to its transmission protocols, is investigated. How the envisaged D2D networks can efficiently scale their capacity by utilising the unlicensed spectrum with appropriately designed LTE-Unlicensed protocols is examined

    Pertanika Journal of Science & Technology

    Get PDF
    corecore