1,923 research outputs found

    Multi-user indoor optical wireless communication system channel control using a genetic algorithm

    Get PDF
    A genetic algorithm controlled multispot transmitter is demonstrated that is capable of optimising the received power distribution for randomly aligned single element receivers in multiple fully diffuse optical wireless communications systems with multiple mobile users. Using a genetic algorithm to control the intensity of individual diffusion spots, system deployment environment changes, user movement and user alignment can be compensating for, with negligible impact on the bandwidth and root mean square delay spread. It is shown that the dynamic range, referenced against the peak received power, can be reduced up to 27% for empty environments and up to 26% when the users are moving. Furthermore, the effect of user movement, that can perturb the channel up to 8%, can be reduced to within 5% of the optimised case. Compared to alternative bespoke designs that are capable of mitigating optical wireless channel drawbacks, this method provides the possibility of cost-effectiveness for mass-produced receivers in applications where end-user friendliness and mobility are paramount

    Genetic algorithm optimisation methods applied to the indoor optical wireless communications channel

    Get PDF
    This thesis details an investigation into the application of genetic algorithms to indoor optical wireless communication systems. The principle aims are to show how it is possible for a genetic algorithm to control the received power distribution within multiple dynamic environments, such that a single receiver design can be employed lowering system costs. This kind of approach is not typical within the research currently being undertaken, where normally, the emphasis on system performance has always been linked with improvements to the receiver design. Within this thesis, a custom built simulator has been developed with the ability to determine the channel characteristics at all locations with the system deployment environment, for multiple configurations including user movement and user alignment variability. Based on these results an investigation began into the structure of the genetic algorithm, testing 192 different ones in total. After evaluation of each one of the algorithms and their performance merits, 2 genetic algorithms remained and are proposed for use. These 2 algorithms were shown capable of reducing the receiver power deviation by up to 26%, and forming, whilst the user perturbs the channel, through movement and variable alignment, a consistent power distribution to within 12% of the optimised case. The final part of the work, extends the use of the genetic algorithm to not only try to optimise the received power deviation, but also the received signal to noise ratio deviation. It was shown that the genetic algorithm is capable of reducing the deviation by around 12% in an empty environment and maintain this optimised case to within 10% when the user perturbs the channel

    Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review

    Get PDF
    The capabilities of autonomous mobile robotic systems have been steadily improving due to recent advancements in computer science, engineering, and related disciplines such as cognitive science. In controlled environments, robots have achieved relatively high levels of autonomy. In more unstructured environments, however, the development of fully autonomous mobile robots remains challenging due to the complexity of understanding these environments. Many autonomous mobile robots use classical, learning-based or hybrid approaches for navigation. More recent learning-based methods may replace the complete navigation pipeline or selected stages of the classical approach. For effective deployment, autonomous robots must understand their external environments at a sophisticated level according to their intended applications. Therefore, in addition to robot perception, scene analysis and higher-level scene understanding (e.g., traversable/non-traversable, rough or smooth terrain, etc.) are required for autonomous robot navigation in unstructured outdoor environments. This paper provides a comprehensive review and critical analysis of these methods in the context of their applications to the problems of robot perception and scene understanding in unstructured environments and the related problems of localisation, environment mapping and path planning. State-of-the-art sensor fusion methods and multimodal scene understanding approaches are also discussed and evaluated within this context. The paper concludes with an in-depth discussion regarding the current state of the autonomous ground robot navigation challenge in unstructured outdoor environments and the most promising future research directions to overcome these challenges

    Genetic algorithm optimisation methods applied to the indoor optical wireless communications channel

    Get PDF
    This thesis details an investigation into the application of genetic algorithms to indoor optical wireless communication systems. The principle aims are to show how it is possible for a genetic algorithm to control the received power distribution within multiple dynamic environments, such that a single receiver design can be employed lowering system costs. This kind of approach is not typical within the research currently being undertaken, where normally, the emphasis on system performance has always been linked with improvements to the receiver design. Within this thesis, a custom built simulator has been developed with the ability to determine the channel characteristics at all locations with the system deployment environment, for multiple configurations including user movement and user alignment variability. Based on these results an investigation began into the structure of the genetic algorithm, testing 192 different ones in total. After evaluation of each one of the algorithms and their performance merits, 2 genetic algorithms remained and are proposed for use. These 2 algorithms were shown capable of reducing the receiver power deviation by up to 26%, and forming, whilst the user perturbs the channel, through movement and variable alignment, a consistent power distribution to within 12% of the optimised case. The final part of the work, extends the use of the genetic algorithm to not only try to optimise the received power deviation, but also the received signal to noise ratio deviation. It was shown that the genetic algorithm is capable of reducing the deviation by around 12% in an empty environment and maintain this optimised case to within 10% when the user perturbs the channel.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Establishing and optimising unmanned airborne relay networks in urban environments

    Get PDF
    This thesis assesses the use of a group of small, low-altitude, low-power (in terms of communication equipment), xed-wing unmanned aerial vehicles (UAVs) as a mobile communication relay nodes to facilitate reliable communication between ground nodes in urban environments. This work focuses on enhancing existing models for optimal trajectory planning and enabling UAV relay implementation in realistic urban scenarios. The performance of the proposed UAV relay algorithms was demonstrated and proved through an indoor simulated urban environment, the rst experiment of its kind.The objective of enabling UAV relay deployment in realistic urban environments is addressed through relaxing the constraints on the assumptions of communication prediction models assumptions, reducing knowledge requirements and improving prediction efficiency. This thesis explores assumptions for urban environment knowledge at three different levels: (i) full knowledge about the urban environment, (ii) partially known urban environments, and (iii) no knowledge about the urban environment. The work starts with exploring models that assume the city size, layout and its effects on wireless communication strength are known, representing full knowledge about the urban environment. [Continues.]</div

    The Deployment in the Wireless Sensor Networks: Methodologies, Recent Works and Applications

    Get PDF
    International audienceThe wireless sensor networks (WSN) is a research area in continuous evolution with a variety of application contexts. Wireless sensor networks pose many optimization problems, particularly because sensors have limited capacity in terms of energy, processing and memory. The deployment of sensor nodes is a critical phase that significantly affects the functioning and performance of the network. Often, the sensors constituting the network cannot be accurately positioned, and are scattered erratically. To compensate the randomness character of their placement, a large number of sensors is typically deployed, which also helps to increase the fault tolerance of the network. In this paper, we are interested in studying the positioning and placement of sensor nodes in a WSN. First, we introduce the problem of deployment and then we present the latest research works about the different proposed methods to solve this problem. Finally, we mention some similar issues related to the deployment and some of its interesting applications

    Space-partitioning with cascade-connected ANN structures for positioning in mobile communication systems

    Get PDF
    The world around us is getting more connected with each day passing by – new portable devices employing wireless connections to various networks wherever one might be. Locationaware computing has become an important bit of telecommunication services and industry. For this reason, the research efforts on new and improved localisation algorithms are constantly being performed. Thus far, the satellite positioning systems have achieved highest popularity and penetration regarding the global position estimation. In spite the numerous investigations aimed at enabling these systems to equally procure the position in both indoor and outdoor environments, this is still a task to be completed. This research work presented herein aimed at improving the state-of-the-art positioning techniques through the use of two highly popular mobile communication systems: WLAN and public land mobile networks. These systems already have widely deployed network structures (coverage) and a vast number of (inexpensive) mobile clients, so using them for additional, positioning purposes is rational and logical. First, the positioning in WLAN systems was analysed and elaborated. The indoor test-bed, used for verifying the models’ performances, covered almost 10,000m2 area. It has been chosen carefully so that the positioning could be thoroughly explored. The measurement campaigns performed therein covered the whole of test-bed environment and gave insight into location dependent parameters available in WLAN networks. Further analysis of the data lead to developing of positioning models based on ANNs. The best single ANN model obtained 9.26m average distance error and 7.75m median distance error. The novel positioning model structure, consisting of cascade-connected ANNs, improved those results to 8.14m and 4.57m, respectively. To adequately compare the proposed techniques with other, well-known research techniques, the environment positioning error parameter was introduced. This parameter enables to take the size of the test environment into account when comparing the accuracy of the indoor positioning techniques. Concerning the PLMN positioning, in-depth analysis of available system parameters and signalling protocols produced a positioning algorithm, capable of fusing the system received signal strength parameters received from multiple systems and multiple operators. Knowing that most of the areas are covered by signals from more than one network operator and even more than one system from one operator, it becomes easy to note the great practical value of this novel algorithm. On the other hand, an extensive drive-test measurement campaign, covering more than 600km in the central areas of Belgrade, was performed. Using this algorithm and applying the single ANN models to the recorded measurements, a 59m average distance error and 50m median distance error were obtained. Moreover, the positioning in indoor environment was verified and the degradation of performances, due to the crossenvironment model use, was reported: 105m average distance error and 101m median distance error. When applying the new, cascade-connected ANN structure model, distance errors were reduced to 26m and 2m, for the average and median distance errors, respectively. The obtained positioning accuracy was shown to be good enough for the implementation of a broad scope of location based services by using the existing and deployed, commonly available, infrastructure

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    • …
    corecore