46,366 research outputs found

    Adaptive vehicular networking with Deep Learning

    Get PDF
    Vehicular networks have been identified as a key enabler for future smart traffic applications aiming to improve on-road safety, increase road traffic efficiency, or provide advanced infotainment services to improve on-board comfort. However, the requirements of smart traffic applications also place demands on vehicular networks’ quality in terms of high data rates, low latency, and reliability, while simultaneously meeting the challenges of sustainability, green network development goals and energy efficiency. The advances in vehicular communication technologies combined with the peculiar characteristics of vehicular networks have brought challenges to traditional networking solutions designed around fixed parameters using complex mathematical optimisation. These challenges necessitate greater intelligence to be embedded in vehicular networks to realise adaptive network optimisation. As such, one promising solution is the use of Machine Learning (ML) algorithms to extract hidden patterns from collected data thus formulating adaptive network optimisation solutions with strong generalisation capabilities. In this thesis, an overview of the underlying technologies, applications, and characteristics of vehicular networks is presented, followed by the motivation of using ML and a general introduction of ML background. Additionally, a literature review of ML applications in vehicular networks is also presented drawing on the state-of-the-art of ML technology adoption. Three key challenging research topics have been identified centred around network optimisation and ML deployment aspects. The first research question and contribution focus on mobile Handover (HO) optimisation as vehicles pass between base stations; a Deep Reinforcement Learning (DRL) handover algorithm is proposed and evaluated against the currently deployed method. Simulation results suggest that the proposed algorithm can guarantee optimal HO decision in a realistic simulation setup. The second contribution explores distributed radio resource management optimisation. Two versions of a Federated Learning (FL) enhanced DRL algorithm are proposed and evaluated against other state-of-the-art ML solutions. Simulation results suggest that the proposed solution outperformed other benchmarks in overall resource utilisation efficiency, especially in generalisation scenarios. The third contribution looks at energy efficiency optimisation on the network side considering a backdrop of sustainability and green networking. A cell switching algorithm was developed based on a Graph Neural Network (GNN) model and the proposed energy efficiency scheme is able to achieve almost 95% of the metric normalised energy efficiency compared against the “ideal” optimal energy efficiency benchmark and is capable of being applied in many more general network configurations compared with the state-of-the-art ML benchmark

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Energy efficient green wireless communication systems with imperfect CSI and data outage

    Get PDF
    Modern applications involve green communication technologies motivating well optimisation in the power–limited regime. In comparison to most of existing related work that assumes perfect channel state information (CSI) is always available, which is unfortunately not true in reality, this work focuses on an optimal energy efficient solution for resource allocation in multiuser orthogonal frequency division multiple access (OFDMA) networks in the presence of imperfect CSI and data outage conditions. Particularly, in view that wireless channel conditions, circuit power consumptions and users’ quality–of–service (QoS) requirements are heterogeneous in nature, we enable attractive tuning options by letting energy efficiency optimisation objective to assign weights to each allocation link. Also, we interpret effects of data outage due to imperfect CSI using a profound insight on the monotonicity of noncentral chi-squared inverse distribution function, which reveals that our design complies with expected physics and mechanics of conventional energy efficiency approach and that it can be successfully degenerated to the energy efficiency model with perfect CSI. Furthermore, we formulate a mixed combinatorial problem towards maximising the energy efficiency subject to a minimum QoS requirement, channel interference and transmitting power constraints. The problem is transformed into an equivalent quasiconcave problem with respect to power, and concave problem with respect to the subcarrier indexing coefficients using the concept of subcarrier time–sharing. We optimise through a simple and versatile methodology, which uses standard–Lagrangian optimisation technique to obtain joint dynamic subcarrier and adaptive power allocations by means of final formulas. We also examine key properties of the introduced optimal solution in terms of implementation convergence and complexity, level of optimality, and impact of imperfect CSI coefficients and circuit power on network performance. The simulation results demonstrate the effectiveness of our allocation scheme for achieving higher energy efficiency performance with the guaranteed QoS support and lower complexity than existing approaches especially when perfect CSI is not available

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Leveraging intelligence from network CDR data for interference aware energy consumption minimization

    Get PDF
    Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo

    Energy-Efficient Multiple Relay Selection in Cognitive Radio Networks

    Get PDF
    Cognitive Radios play very important role in military applications due to their capability to adapt intelligently according to the prevailing environmental conditions. Relays form the main communication enablers in infrastructure-less networks. In this paper, relay selection for increasing the energy efficiency of a cognitive radio network is considered. The proposed approach considers the multiple - relay selection scheme with strict outage probability constraints. Energy maximisation is posed as an optimisation problem, the solution to which shows that relay selection under outage constraints is different from the one without such a constraint. It can be observed from the simulations that energy efficiency and outage behaviour follows trade-off relations. Moreover, the original Branch and Bound algorithm has been re-designed for faster convergence. It has also been demonstrated that when strict outage constraints are imposed, the optimal number of relays selected will be more in comparison to the case where there is no outage consideration
    • …
    corecore