1,213 research outputs found

    Decoding the neural substrates of reward-related decision making with functional MRI

    Get PDF
    Although previous studies have implicated a diverse set of brain regions in reward-related decision making, it is not yet known which of these regions contain information that directly reflects a decision. Here, we measured brain activity using functional MRI in a group of subjects while they performed a simple reward-based decision-making task: probabilistic reversal-learning. We recorded brain activity from nine distinct regions of interest previously implicated in decision making and separated out local spatially distributed signals in each region from global differences in signal. Using a multivariate analysis approach, we determined the extent to which global and local signals could be used to decode subjects' subsequent behavioral choice, based on their brain activity on the preceding trial. We found that subjects' decisions could be decoded to a high level of accuracy on the basis of both local and global signals even before they were required to make a choice, and even before they knew which physical action would be required. Furthermore, the combined signals from three specific brain areas (anterior cingulate cortex, medial prefrontal cortex, and ventral striatum) were found to provide all of the information sufficient to decode subjects' decisions out of all of the regions we studied. These findings implicate a specific network of regions in encoding information relevant to subsequent behavioral choice

    Damage to the right insula disrupts the perception of affective touch

    Get PDF
    © 2020 Kirsch et al. This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use and redistribution provided that the original author and source are credited.Specific, peripheral C-tactile afferents contribute to the perception of tactile pleasure, but the brain areas involved in their processing remain debated. We report the first human lesion study on the perception of C-tactile touch in right hemisphere stroke patients (N = 59), revealing that right posterior and anterior insula lesions reduce tactile, contralateral and ipsilateral pleasantness sensitivity, respectively. These findings corroborate previous imaging studies regarding the role of the posterior insula in the perception of affective touch. However, our findings about the crucial role of the anterior insula for ipsilateral affective touch perception open new avenues of enquiry regarding the cortical organization of this tactile system.Peer reviewe

    Advancing Statistical Inference For Population Studies In Neuroimaging Using Machine Learning

    Get PDF
    Modern neuroimaging techniques allow us to investigate the brain in vivo and in high resolution, providing us with high dimensional information regarding the structure and the function of the brain in health and disease. Statistical analysis techniques transform this rich imaging information into accessible and interpretable knowledge that can be used for investigative as well as diagnostic and prognostic purposes. A prevalent area of research in neuroimaging is group comparison, i.e., the comparison of the imaging data of two groups (e.g. patients vs. healthy controls or people who respond to treatment vs. people who don\u27t) to identify discriminative imaging patterns that characterize different conditions. In recent years, the neuroimaging community has adopted techniques from mathematics, statistics, and machine learning to introduce novel methodologies targeting the improvement of our understanding of various neuropsychiatric and neurodegenerative disorders. However, existing statistical methods are limited by their reliance on ad-hoc assumptions regarding the homogeneity of disease effect, spatial properties of the underlying signal and the covariate structure of data, which imposes certain constraints about the sampling of datasets. 1. First, the overarching assumption behind most analytical tools, which are commonly used in neuroimaging studies, is that there is a single disease effect that differentiates the patients from controls. In reality, however, the disease effect may be heterogeneously expressed across the patient population. As a consequence, when searching for a single imaging pattern that characterizes the difference between healthy controls and patients, we may only get a partial or incomplete picture of the disease effect. 2. Second, and importantly, most analyses assume a uniform shape and size of disease effect. As a consequence, a common step in most neuroimaging analyses it to apply uniform smoothing of the data to aggregate regional information to each voxel to improve the signal to noise ratio. However, the shape and size of the disease patterns may not be uniformly represented across the brain. 3. Lastly, in practical scenarios, imaging datasets commonly include variations due to multiple covariates, which often have effects that overlap with the searched disease effects. To minimize the covariate effects, studies are carefully designed by appropriately matching the populations under observation. The difficulty of this task is further exacerbated by the advent of big data analyses that often entail the aggregation of large datasets collected across many clinical sites. The goal of this thesis is to address each of the aforementioned assumptions and limitations by introducing robust mathematical formulations, which are founded on multivariate machine learning techniques that integrate discriminative and generative approaches. Specifically, 1. First, we introduce an algorithm termed HYDRA which stands for heterogeneity through discriminative analysis. This method parses the heterogeneity in neuroimaging studies by simultaneously performing clustering and classification by use of piecewise linear decision boundaries. 2. Second, we propose to perform regionally linear multivariate discriminative statistical mapping (MIDAS) toward finding the optimal level of variable smoothing across the brain anatomy and tease out group differences in neuroimaging datasets. This method makes use of overlapping regional discriminative filters to approximate a matched filter that best delineates the underlying disease effect. 3. Lastly, we develop a method termed generative discriminative machines (GDM) toward reducing the effect of confounds in biased samples. The proposed method solves for a discriminative model that can also optimally generate the data when taking into account the covariate structure. We extensively validated the performance of the developed frameworks in the presence of diverse types of simulated scenarios. Furthermore, we applied our methods on a large number of clinical datasets that included structural and functional neuroimaging data as well as genetic data. Specifically, HYDRA was used for identifying distinct subtypes of Alzheimer\u27s Disease. MIDAS was applied for identifying the optimally discriminative patterns that differentiated between truth-telling and lying functional tasks. GDM was applied on a multi-site prediction setting with severely confounded samples. Our promising results demonstrate the potential of our methods to advance neuroimaging analysis beyond the set of assumptions that limit its capacity and improve statistical power

    Prior-based Coregistration and Cosegmentation

    Get PDF
    We propose a modular and scalable framework for dense coregistration and cosegmentation with two key characteristics: first, we substitute ground truth data with the semantic map output of a classifier; second, we combine this output with population deformable registration to improve both alignment and segmentation. Our approach deforms all volumes towards consensus, taking into account image similarities and label consistency. Our pipeline can incorporate any classifier and similarity metric. Results on two datasets, containing annotations of challenging brain structures, demonstrate the potential of our method.Comment: The first two authors contributed equall

    Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach

    Get PDF
    Progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and idiopathic Parkinson’s disease (IPD) can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs). An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i) a subcortical motor network; (ii) each of its component regions and (iii) the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process

    A fully automatic CAD-CTC system based on curvature analysis for standard and low-dose CT data

    Get PDF
    Computed tomography colonography (CTC) is a rapidly evolving noninvasive medical investigation that is viewed by radiologists as a potential screening technique for the detection of colorectal polyps. Due to the technical advances in CT system design, the volume of data required to be processed by radiologists has increased significantly, and as a consequence the manual analysis of this information has become an increasingly time consuming process whose results can be affected by inter- and intrauser variability. The aim of this paper is to detail the implementation of a fully integrated CAD-CTC system that is able to robustly identify the clinically significant polyps in the CT data. The CAD-CTC system described in this paper is a multistage implementation whose main system components are: 1) automatic colon segmentation; 2) candidate surface extraction; 3) feature extraction; and 4) classification. Our CAD-CTC system performs at 100% sensitivity for polyps larger than 10 mm, 92% sensitivity for polyps in the range 5 to 10 mm, and 57.14% sensitivity for polyps smaller than 5 mm with an average of 3.38 false positives per dataset. The developed system has been evaluated on synthetic and real patient CT data acquired with standard and low-dose radiation levels

    A supervised clustering approach for extracting predictive information from brain activation images

    Get PDF
    International audienceIt is a standard approach to consider that images encode some information such as face expression or biomarkers in medical images; decoding this information is particularly challenging in the case of medical imaging, because the whole image domain has to be considered a priori to avoid biasing image-based prediction and image interpretation. Feature selection is thus needed, but is often performed using mass-univariate procedures, that handle neither the spatial structure of the images, nor the multivariate nature of the signal. Here we propose a solution that computes a reduced set of high-level features which compress the image information while retaining its informative parts: first, we introduce a hierarchical clustering of the research domain that incorporates spatial connectivity constraints and reduces the complexity of the possible spatial configurations to a single tree of nested regions. Then we prune the tree in order to produce a parcellation (division of the image domain) such that parcel-based signal averages optimally predict the target information. We show the power of this approach with respect to reference techniques on simulated data and apply it to enhance the prediction of the subject's behaviour during functional Magnetic Resonance Imaging (fMRI) scanning sessions. Besides its superior performance, the method provides an interpretable weighting of the regions involved in the regression or classification task

    High Dimensional Classification of Structural MRI Alzheimer’s Disease Data Based on Large Scale Regularization

    Get PDF
    In this work we use a large scale regularization approach based on penalized logistic regression to automatically classify structural MRI images (sMRI) according to cognitive status. Its performance is illustrated using sMRI data from the Alzheimer Disease Neuroimaging Initiative (ADNI) clinical database. We downloaded sMRI data from 98 subjects (49 cognitive normal and 49 patients) matched by age and sex from the ADNI website. Images were segmented and normalized using SPM8 and ANTS software packages. Classification was performed using GLMNET library implementation of penalized logistic regression based on coordinate-wise descent optimization techniques. To avoid optimistic estimates classification accuracy, sensitivity, and specificity were determined based on a combination of three-way split of the data with nested 10-fold cross-validations. One of the main features of this approach is that classification is performed based on large scale regularization. The methodology presented here was highly accurate, sensitive, and specific when automatically classifying sMRI images of cognitive normal subjects and Alzheimer disease (AD) patients. Higher levels of accuracy, sensitivity, and specificity were achieved for gray matter (GM) volume maps (85.7, 82.9, and 90%, respectively) compared to white matter volume maps (81.1, 80.6, and 82.5%, respectively). We found that GM and white matter tissues carry useful information for discriminating patients from cognitive normal subjects using sMRI brain data. Although we have demonstrated the efficacy of this voxel-wise classification method in discriminating cognitive normal subjects from AD patients, in principle it could be applied to any clinical population
    corecore