58 research outputs found

    Finding Mutated Subnetworks Associated with Survival in Cancer

    Full text link
    Next-generation sequencing technologies allow the measurement of somatic mutations in a large number of patients from the same cancer type. One of the main goals in analyzing these mutations is the identification of mutations associated with clinical parameters, such as survival time. This goal is hindered by the genetic heterogeneity of mutations in cancer, due to the fact that genes and mutations act in the context of pathways. To identify mutations associated with survival time it is therefore crucial to study mutations in the context of interaction networks. In this work we study the problem of identifying subnetworks of a large gene-gene interaction network that have mutations associated with survival. We formally define the associated computational problem by using a score for subnetworks based on the test statistic of the log-rank test, a widely used statistical test for comparing the survival of two populations. We show that the computational problem is NP-hard and we propose a novel algorithm, called Network of Mutations Associated with Survival (NoMAS), to solve it. NoMAS is based on the color-coding technique, that has been previously used in other applications to find the highest scoring subnetwork with high probability when the subnetwork score is additive. In our case the score is not additive; nonetheless, we prove that under a reasonable model for mutations in cancer NoMAS does identify the optimal solution with high probability. We test NoMAS on simulated and cancer data, comparing it to approaches based on single gene tests and to various greedy approaches. We show that our method does indeed find the optimal solution and performs better than the other approaches. Moreover, on two cancer datasets our method identifies subnetworks with significant association to survival when none of the genes has significant association with survival when considered in isolation.Comment: This paper was selected for oral presentation at RECOMB 2016 and an abstract is published in the conference proceeding

    Bridging the Gap between Genotype and Phenotype via Network Approaches

    Get PDF
    In the last few years we have witnessed tremendous progress in detecting associations between genetic variations and complex traits. While genome-wide association studies have been able to discover genomic regions that may influence many common human diseases, these discoveries created an urgent need for methods that extend the knowledge of genotype-phenotype relationships to the level of the molecular mechanisms behind them. To address this emerging need, computational approaches increasingly utilize a pathway-centric perspective. These new methods often utilize known or predicted interactions between genes and/or gene products. In this review, we survey recently developed network based methods that attempt to bridge the genotype-phenotype gap. We note that although these methods help narrow the gap between genotype and phenotype relationships, these approaches alone cannot provide the precise details of underlying mechanisms and current research is still far from closing the gap

    Identifying Network-Biomarkers of Breast Cancer Survivability

    Get PDF
    One of the key challenges of breast cancer research is to predict whether a patient identified with specific subtype or treated with a specific therapy is going to survive or die. Current studies find small subsets of gene biomarkers able to accurately predict the response to therapy. In these studies, the selected genes are not necessarily functionally related, and hence, they may not correctly indicate the molecular mechanism behind breast cancer survivability. Also, several studies have shown there is a very low overlap between the different respective biomarkers subsets for the same cancer disease. To improve the robustness of classification performance and stability of detected biomarkers, recent methods take existing knowledge on relations between genes into account in the classifier, by aggregating functionality related genes to produce discriminative gene subnetworks called network-biomarkers. In this paper, given a breast cancer dataset of patients with different subtypes treated with a given therapy drug, we devised network-based machine learning approach by integrating protein protein interaction network (PPI) with gene expression data (1) to identify the network-biomarkers of breast cancer survivability a) based on subtypes and b) based on therapy and (2) to predict the survivability of breast cancer patients a) based on subtypes b) treated with a therapy drug. We used the concept of seed gene for identification of network-biomarkers with distance 2, 3 and 4 from seed gene protein and our method found distance 3 and 44 are the distance that gives us best result for identifying survivability of breast cancer patient based on subtype and therapy respectively. To solve the class imbalance problem in some subtypes, we implemented ADASYN. We obtained best classification performance using random forest where the geometric mean, F1-measure and accuracy are respectively 0.867, 0.850 and 87.00% for subtype specific study, and 0.829, 0.807 and 83.77%, for therapy specific

    IPA: Integrated predictive gene signature from gene expression based breast cancer patient samples

    Full text link
    Background: Novel predictive markers are needed to accurately diagnose the breast cancer patients so they do not need to undergo any unnecessary aggressive therapies. Various gene expression studies based predictive gene signatureshave generated in the recent past to predict the binary estrogen-receptor subclass or to predict the therapy response subclass. However, the existing algorithms comes with many limitations, including low predictive performances over multiple cohorts of patients and non-significant or limited biological roles associated with thepredictive gene signatures. Therefore, the aim of this study is to develop novel predictive markers with improved performances.Methods: We propose a novel prediction algorithm called IPA to construct a predictive gene signature for performing multiple prediction tasks of predicting estrogen-receptor based binary subclass and predicting chemotherapy response (neoadjuvantly) based binary subclass. The constructed gene signature with considering multiple classification techniques was used to evaluate the algorithm performance on multiple cohorts of breast cancer patients.Results: The evaluation on multiple validation cohorts demonstrated that proposed algorithm achieved stable and high performance to perform prediction tasks, with consideration given to any classification techniques. We show that the predictive gene signature of our proposed algorithm reflects the mechanisms underlying the estrogen-receptors or response to therapy with significant greater biological interpretations, compared with the other existing algorithm

    OMICS Approach for Identifying Predictive Biomarkers in Osteosarcoma

    Get PDF
    Osteosarcoma has a complex genetic background, and the response to treatments varies among patients. Induction chemotherapy has substantially improved the clinical outcome of osteosarcoma. Currently, there is no practical predictive modality in clinical settings, and therefore, uniform chemotherapy is applied for all patients. However, since the response to induction chemotherapy considerably influences the prognosis, the therapeutic strategy should be optimized for each patient before initiating treatments. Therefore, identification and establishment of predictive biomarkers for induction chemotherapy have been a long-standing goal in osteosarcoma research. Because of the complex genetic traits associated with osteosarcoma, adoption of an omics approach for global gene expression is attractive in the search for predictive biomarkers, and omics technologies have recently been applied to the development of predictive biomarkers in malignancies, including osteosarcoma. Global studies have been performed at the genome, transcriptome, and proteome levels in osteosarcoma, and various candidate biomarkers have been reported using clinical specimens. Further investigation of the clinical utilities of these identified predictive biomarkers will be merited through validation and verification studies

    Protein-protein interactions: network analysis and applications in drug discovery

    Get PDF
    Physical interactions among proteins constitute the backbone of cellular function, making them an attractive source of therapeutic targets. Although the challenges associated with targeting protein-protein interactions (PPIs) -in particular with small molecules are considerable, a growing number of functional PPI modulators is being reported and clinically evaluated. An essential starting point for PPI inhibitor screening or design projects is the generation of a detailed map of the human interactome and the interactions between human and pathogen proteins. Different routes to produce these biological networks are being combined, including literature curation and computational methods. Experimental approaches to map PPIs mainly rely on the yeast two-hybrid (Y2H) technology, which have recently shown to produce reliable protein networks. However, other genetic and biochemical methods will be essential to increase both coverage and resolution of current protein networks in order to increase their utility towards the identification of novel disease-related proteins and PPIs, and their potential use as therapeutic targets

    RRHGE: a novel approach to classify the estrogen receptor based breast cancer subtypes

    Get PDF
    Breast cancer is the most common type of cancer among females with a high mortality rate. It is essential to classify the estrogen receptor based breast cancer subtypes into correct subclasses, so that the right treatments can be applied to lower the mortality rate. Using gene signatures derived from gene interaction networks to classify breast cancers has proven to be more reproducible and can achieve higher classification performance. However, the interactions in the gene interaction network usually contain many false-positive interactions that do not have any biological meanings. Therefore, it is a challenge to incorporate the reliability assessment of interactions when deriving gene signatures from gene interaction networks. How to effectively extract gene signatures from available resources is critical to the success of cancer classification

    High Accordance in Prognosis Prediction of Colorectal Cancer across Independent Datasets by Multi-Gene Module Expression Profiles

    Get PDF
    A considerable portion of patients with colorectal cancer have a high risk of disease recurrence after surgery. These patients can be identified by analyzing the expression profiles of signature genes in tumors. But there is no consensus on which genes should be used and the performance of specific set of signature genes varies greatly with different datasets, impeding their implementation in the routine clinical application. Instead of using individual genes, here we identified functional multi-gene modules with significant expression changes between recurrent and recurrence-free tumors, used them as the signatures for predicting colorectal cancer recurrence in multiple datasets that were collected independently and profiled on different microarray platforms. The multi-gene modules we identified have a significant enrichment of known genes and biological processes relevant to cancer development, including genes from the chemokine pathway. Most strikingly, they recruited a significant enrichment of somatic mutations found in colorectal cancer. These results confirmed the functional relevance of these modules for colorectal cancer development. Further, these functional modules from different datasets overlapped significantly. Finally, we demonstrated that, leveraging above information of these modules, our module based classifier avoided arbitrary fitting the classifier function and screening the signatures using the training data, and achieved more consistency in prognosis prediction across three independent datasets, which holds even using very small training sets of tumors

    From Correlation to Causality: Does Network Information improve Cancer Outcome Prediction?

    Get PDF
    Motivation: Disease progression in cancer can vary substantially between patients. Yet, patients often receive the same treatment. Recently, there has been much work on predicting disease progression and patient outcome variables from gene expression in order to personalize treatment options. A widely used approach is high-throughput experiments that aim to explore predictive signature genes which would provide identification of clinical outcome of diseases. Microarray data analysis helps to reveal underlying biological mechanisms of tumor progression, metastasis, and drug-resistance in cancer studies. Despite first diagnostic kits in the market, there are open problems such as the choice of random gene signatures or noisy expression data. The experimental or computational noise in data and limited tissue samples collected from patients might furthermore reduce the predictive power and biological interpretability of such signature genes. Nevertheless, signature genes predicted by different studies generally represent poor similarity; even for the same type of cancer. Integration of network information with gene expression data could provide more efficient signatures for outcome prediction in cancer studies. One approach to deal with these problems employs gene-gene relationships and ranks genes using the random surfer model of Google's PageRank algorithm. Unfortunately, the majority of published network-based approaches solely tested their methods on a small amount of datasets, questioning the general applicability of network-based methods for outcome prediction. Methods: In this thesis, I provide a comprehensive and systematically evaluation of a network-based outcome prediction approach -- NetRank - a PageRank derivative -- applied on several types of gene expression cancer data and four different types of networks. The algorithm identifies a signature gene set for a specific cancer type by incorporating gene network information with given expression data. To assess the performance of NetRank, I created a benchmark dataset collection comprising 25 cancer outcome prediction datasets from literature and one in-house dataset. Results: NetRank performs significantly better than classical methods such as foldchange or t-test as it improves the prediction performance in average for 7%. Besides, we are approaching the accuracy level of the authors' signatures by applying a relatively unbiased but fully automated process for biomarker discovery. Despite an order of magnitude difference in network size, a regulatory, a protein-protein interaction and two predicted networks perform equally well. Signatures as published by the authors and the signatures generated with classical methods do not overlap -- not even for the same cancer type -- whereas the network-based signatures strongly overlap. I analyze and discuss these overlapping genes in terms of the Hallmarks of cancer and in particular single out six transcription factors and seven proteins and discuss their specific role in cancer progression. Furthermore several tests are conducted for the identification of a Universal Cancer Signature. No Universal Cancer Signature could be identified so far, but a cancer-specific combination of general master regulators with specific cancer genes could be discovered that achieves the best results for all cancer types. As NetRank offers a great value for cancer outcome prediction, first steps for a secure usage of NetRank in a public cloud are described. Conclusion: Experimental evaluation of network-based methods on a gene expression benchmark dataset suggests that these methods are especially suited for outcome prediction as they overcome the problems of random gene signatures and noisy expression data. Through the combination of network information with gene expression data, network-based methods identify highly similar signatures over all cancer types, in contrast to classical methods that fail to identify highly common gene sets across the same cancer types. In general allows the integration of additional information in gene expression analysis the identification of more reliable, accurate and reproducible biomarkers and provides a deeper understanding of processes occurring in cancer development and progression.:1 Definition of Open Problems 2 Introduction 2.1 Problems in cancer outcome prediction 2.2 Network-based cancer outcome prediction 2.3 Universal Cancer Signature 3 Methods 3.1 NetRank algorithm 3.2 Preprocessing and filtering of the microarray data 3.3 Accuracy 3.4 Signature similarity 3.5 Classical approaches 3.6 Random signatures 3.7 Networks 3.8 Direct neighbor method 3.9 Dataset extraction 4 Performance of NetRank 4.1 Benchmark dataset for evaluation 4.2 The influence of NetRank parameters 4.3 Evaluation of NetRank 4.4 General findings 4.5 Computational complexity of NetRank 4.6 Discussion 5 Universal Cancer Signature 5.1 Signature overlap – a sign for Universal Cancer Signature 5.2 NetRank genes are highly connected and confirmed in literature 5.3 Hallmarks of Cancer 5.4 Testing possible Universal Cancer Signatures 5.5 Conclusion 6 Cloud-based Biomarker Discovery 6.1 Introduction to secure Cloud computing 6.2 Cancer outcome prediction 6.3 Security analysis 6.4 Conclusion 7 Contributions and Conclusion

    Computational methods for breast cancer diagnosis, prognosis, and treatment prediction

    Full text link
    The research presented here develops a robust reliability algorithm for the identification of reliable protein interactions that can be incorporated with a gene expression dataset to improve the algorithm performance, and novel breast cancer based diagnostic, prognostic and treatment prediction algorithms, respectively, which take into account the existing issues in order to provide a fair estimation of their performance
    corecore