1,024 research outputs found

    Energy Efficiency and Throughput Optimization in 5G Heterogeneous Networks

    Get PDF
    Device to device communication offers an optimistic technology for 5G network which aims to enhance data rate, reduce latency and cost, improve energy efficiency as well as provide other desired features. 5G heterogeneous network (5GHN) with a decoupled association strategy of downlink (DL) and uplink (UL) is an optimistic solution for challenges which are faced in 4G heterogeneous network (4GHN). Research work presented in this paper evaluates performance of 4GHN along with DL and UL coupled (DU-CP) access scheme in comparison with 5GHN with UL and DL decoupled (DU-DCP) access scheme in terms of energy efficiency and network throughput in 4-tier heterogeneous networks. Energy and throughput are optimized for both scenarios i.e. DU-CP and DU-DCP and the results are compared. Detailed performance analysis of DU-CP and DU-DCP access schemes has been done with the help of comparisons of results achieved by implementing genetic algorithm (GA) and particle swarm optimization (PSO). Both these algorithms are suited for the non linear problem under investigation where the search space is large. Simulation results have shown that the DU-DCP access scheme gives better performance as compared to DU-CP scheme in a 4-tier heterogeneous network in terms of network throughput and energy efficiency. PSO achieves an energy efficiency of 12 Mbits/joule for DU-CP and 42 Mbits/joule for DU-DCP, whereas GA yields an energy efficiency of 28 Mbits/joule for DU-CP and 55 Mbits/joule for DU-DCP. Performance of the proposed method is compared with that of three other schemes. The results show that the DU-DCP scheme using GA outperforms the compared methods

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Machine learning for the sustainable energy transition: a data-driven perspective along the value chain from manufacturing to energy conversion

    Get PDF
    According to the special report Global Warming of 1.5 °C of the IPCC, climate action is not only necessary but more than ever urgent. The world is witnessing rising sea levels, heat waves, events of flooding, droughts, and desertification resulting in the loss of lives and damage to livelihoods, especially in countries of the Global South. To mitigate climate change and commit to the Paris agreement, it is of the uttermost importance to reduce greenhouse gas emissions coming from the most emitting sector, namely the energy sector. To this end, large-scale penetration of renewable energy systems into the energy market is crucial for the energy transition toward a sustainable future by replacing fossil fuels and improving access to energy with socio-economic benefits. With the advent of Industry 4.0, Internet of Things technologies have been increasingly applied to the energy sector introducing the concept of smart grid or, more in general, Internet of Energy. These paradigms are steering the energy sector towards more efficient, reliable, flexible, resilient, safe, and sustainable solutions with huge environmental and social potential benefits. To realize these concepts, new information technologies are required, and among the most promising possibilities are Artificial Intelligence and Machine Learning which in many countries have already revolutionized the energy industry. This thesis presents different Machine Learning algorithms and methods for the implementation of new strategies to make renewable energy systems more efficient and reliable. It presents various learning algorithms, highlighting their advantages and limits, and evaluating their application for different tasks in the energy context. In addition, different techniques are presented for the preprocessing and cleaning of time series, nowadays collected by sensor networks mounted on every renewable energy system. With the possibility to install large numbers of sensors that collect vast amounts of time series, it is vital to detect and remove irrelevant, redundant, or noisy features, and alleviate the curse of dimensionality, thus improving the interpretability of predictive models, speeding up their learning process, and enhancing their generalization properties. Therefore, this thesis discussed the importance of dimensionality reduction in sensor networks mounted on renewable energy systems and, to this end, presents two novel unsupervised algorithms. The first approach maps time series in the network domain through visibility graphs and uses a community detection algorithm to identify clusters of similar time series and select representative parameters. This method can group both homogeneous and heterogeneous physical parameters, even when related to different functional areas of a system. The second approach proposes the Combined Predictive Power Score, a method for feature selection with a multivariate formulation that explores multiple sub-sets of expanding variables and identifies the combination of features with the highest predictive power over specified target variables. This method proposes a selection algorithm for the optimal combination of variables that converges to the smallest set of predictors with the highest predictive power. Once the combination of variables is identified, the most relevant parameters in a sensor network can be selected to perform dimensionality reduction. Data-driven methods open the possibility to support strategic decision-making, resulting in a reduction of Operation & Maintenance costs, machine faults, repair stops, and spare parts inventory size. Therefore, this thesis presents two approaches in the context of predictive maintenance to improve the lifetime and efficiency of the equipment, based on anomaly detection algorithms. The first approach proposes an anomaly detection model based on Principal Component Analysis that is robust to false alarms, can isolate anomalous conditions, and can anticipate equipment failures. The second approach has at its core a neural architecture, namely a Graph Convolutional Autoencoder, which models the sensor network as a dynamical functional graph by simultaneously considering the information content of individual sensor measurements (graph node features) and the nonlinear correlations existing between all pairs of sensors (graph edges). The proposed neural architecture can capture hidden anomalies even when the turbine continues to deliver the power requested by the grid and can anticipate equipment failures. Since the model is unsupervised and completely data-driven, this approach can be applied to any wind turbine equipped with a SCADA system. When it comes to renewable energies, the unschedulable uncertainty due to their intermittent nature represents an obstacle to the reliability and stability of energy grids, especially when dealing with large-scale integration. Nevertheless, these challenges can be alleviated if the natural sources or the power output of renewable energy systems can be forecasted accurately, allowing power system operators to plan optimal power management strategies to balance the dispatch between intermittent power generations and the load demand. To this end, this thesis proposes a multi-modal spatio-temporal neural network for multi-horizon wind power forecasting. In particular, the model combines high-resolution Numerical Weather Prediction forecast maps with turbine-level SCADA data and explores how meteorological variables on different spatial scales together with the turbines' internal operating conditions impact wind power forecasts. The world is undergoing a third energy transition with the main goal to tackle global climate change through decarbonization of the energy supply and consumption patterns. This is not only possible thanks to global cooperation and agreements between parties, power generation systems advancements, and Internet of Things and Artificial Intelligence technologies but also necessary to prevent the severe and irreversible consequences of climate change that are threatening life on the planet as we know it. This thesis is intended as a reference for researchers that want to contribute to the sustainable energy transition and are approaching the field of Artificial Intelligence in the context of renewable energy systems

    Towards trustworthy computing on untrustworthy hardware

    Get PDF
    Historically, hardware was thought to be inherently secure and trusted due to its obscurity and the isolated nature of its design and manufacturing. In the last two decades, however, hardware trust and security have emerged as pressing issues. Modern day hardware is surrounded by threats manifested mainly in undesired modifications by untrusted parties in its supply chain, unauthorized and pirated selling, injected faults, and system and microarchitectural level attacks. These threats, if realized, are expected to push hardware to abnormal and unexpected behaviour causing real-life damage and significantly undermining our trust in the electronic and computing systems we use in our daily lives and in safety critical applications. A large number of detective and preventive countermeasures have been proposed in literature. It is a fact, however, that our knowledge of potential consequences to real-life threats to hardware trust is lacking given the limited number of real-life reports and the plethora of ways in which hardware trust could be undermined. With this in mind, run-time monitoring of hardware combined with active mitigation of attacks, referred to as trustworthy computing on untrustworthy hardware, is proposed as the last line of defence. This last line of defence allows us to face the issue of live hardware mistrust rather than turning a blind eye to it or being helpless once it occurs. This thesis proposes three different frameworks towards trustworthy computing on untrustworthy hardware. The presented frameworks are adaptable to different applications, independent of the design of the monitored elements, based on autonomous security elements, and are computationally lightweight. The first framework is concerned with explicit violations and breaches of trust at run-time, with an untrustworthy on-chip communication interconnect presented as a potential offender. The framework is based on the guiding principles of component guarding, data tagging, and event verification. The second framework targets hardware elements with inherently variable and unpredictable operational latency and proposes a machine-learning based characterization of these latencies to infer undesired latency extensions or denial of service attacks. The framework is implemented on a DDR3 DRAM after showing its vulnerability to obscured latency extension attacks. The third framework studies the possibility of the deployment of untrustworthy hardware elements in the analog front end, and the consequent integrity issues that might arise at the analog-digital boundary of system on chips. The framework uses machine learning methods and the unique temporal and arithmetic features of signals at this boundary to monitor their integrity and assess their trust level

    Optimizing Flow Routing Using Network Performance Analysis

    Get PDF
    Relevant conferences were attended at which work was often presented and several papers were published in the course of this project. • Muna Al-Saadi, Bogdan V Ghita, Stavros Shiaeles, Panagiotis Sarigiannidis. A novel approach for performance-based clustering and management of network traffic flows, IWCMC, ©2019 IEEE. • M. Al-Saadi, A. Khan, V. Kelefouras, D. J. Walker, and B. Al-Saadi: Unsupervised Machine Learning-Based Elephant and Mice Flow Identification, Computing Conference 2021. • M. Al-Saadi, A. Khan, V. Kelefouras, D. J. Walker, and B. Al-Saadi: SDN-Based Routing Framework for Elephant and Mice Flows Using Unsupervised Machine Learning, Network, 3(1), pp.218-238, 2023.The main task of a network is to hold and transfer data between its nodes. To achieve this task, the network needs to find the optimal route for data to travel by employing a particular routing system. This system has a specific job that examines each possible path for data and chooses the suitable one and transmit the data packets where it needs to go as fast as possible. In addition, it contributes to enhance the performance of network as optimal routing algorithm helps to run network efficiently. The clear performance advantage that provides by routing procedures is the faster data access. For example, the routing algorithm take a decision that determine the best route based on the location where the data is stored and the destination device that is asking for it. On the other hand, a network can handle many types of traffic simultaneously, but it cannot exceed the bandwidth allowed as the maximum data rate that the network can transmit. However, the overloading problem are real and still exist. To avoid this problem, the network chooses the route based on the available bandwidth space. One serious problem in the network is network link congestion and disparate load caused by elephant flows. Through forwarding elephant flows, network links will be congested with data packets causing transmission collision, congestion network, and delay in transmission. Consequently, there is not enough bandwidth for mice flows, which causes the problem of transmission delay. Traffic engineering (TE) is a network application that concerns with measuring and managing network traffic and designing feasible routing mechanisms to guide the traffic of the network for improving the utilization of network resources. The main function of traffic engineering is finding an obvious route to achieve the bandwidth requirements of the network consequently optimizing the network performance [1]. Routing optimization has a key role in traffic engineering by finding efficient routes to achieve the desired performance of the network [2]. Furthermore, routing optimization can be considered as one of the primary goals in the field of networks. In particular, this goal is directly related to traffic engineering, as it is based on one particular idea: to achieve that traffic is routed according to accurate traffic requirements [3]. Therefore, we can say that traffic engineering is one of the applications of multiple improvements to routing; routing can also be optimized based on other factors (not just on traffic requirements). In addition, these traffic requirements are variable depending on analyzed dataset that considered if it is data or traffic control. In this regard, the logical central view of the Software Defined Network (SDN) controller facilitates many aspects compared to traditional routing. The main challenge in all network types is performance optimization, but the situation is different in SDN because the technique is changed from distributed approach to a centralized one. The characteristics of SDN such as centralized control and programmability make the possibility of performing not only routing in traditional distributed manner but also routing in centralized manner. The first advantage of centralized routing using SDN is the existence of a path to exchange information between the controller and infrastructure devices. Consequently, the controller has the information for the entire network, flexible routing can be achieved. The second advantage is related to dynamical control of routing due to the capability of each device to change its configuration based on the controller commands [4]. This thesis begins with a wide review of the importance of network performance analysis and its role for understanding network behavior, and how it contributes to improve the performance of the network. Furthermore, it clarifies the existing solutions of network performance optimization using machine learning (ML) techniques in traditional networks and SDN environment. In addition, it highlights recent and ongoing studies of the problem of unfair use of network resources by a particular flow (elephant flow) and the possible solutions to solve this problem. Existing solutions are predominantly, flow routing-based and do not consider the relationship between network performance analysis and flow characterization and how to take advantage of it to optimize flow routing by finding the convenient path for each type of flow. Therefore, attention is given to find a method that may describe the flow based on network performance analysis and how to utilize this method for managing network performance efficiently and find the possible integration for the traffic controlling in SDN. To this purpose, characteristics of network flows is identified as a mechanism which may give insight into the diversity in flow features based on performance metrics and provide the possibility of traffic engineering enhancement using SDN environment. Two different feature sets with respect to network performance metrics are employed to characterize network traffic. Applying unsupervised machine learning techniques including Principal Component Analysis (PCA) and k-means cluster analysis to derive a traffic performance-based clustering model. Afterward, thresholding-based flow identification paradigm has been built using pre-defined parameters and thresholds. Finally, the resulting data clusters are integrated within a unified SDN architectural solution, which improves network management by finding the best flow routing based on the type of flow, to be evaluated against a number of traffic data sources and different performance experiments. The validation process of the novel framework performance has been done by making a performance comparison between SDN-Ryu controller and the proposed SDN-external application based on three factors: throughput, bandwidth,and data transfer rate by conducting two experiments. Furthermore, the proposed method has been validated by using different Data Centre Network (DCN) topologies to demonstrate the effectiveness of the network traffic management solution. The overall validation metrics shows real gains, the results show that 70% of the time, it has high performance with different flows. The proposed routing SDN traffic-engineering paradigm for a particular flow therefore, dynamically provisions network resources among different flow types

    A Framework for Site-Specific Spatial Audio Applications

    Get PDF
    As audio recording and reproduction technology has advanced over the past five decades, increasing attention has been paid to recreating the highly spatialised listening experience we understand from our physical environment. This is the logical next step in the quest for increasing audio clarity, particularly as virtual reality gaming and augmented reality experiences become more widespread. This study sought to develop and demonstrate a technical framework for the production of site-specific audio-based works that is user-friendly and cost effective. The system was intended to be used by existing content producers and audio programmers to work collaboratively with a range of site-based organisations such as museums and galleries to produce an audio augmentation of the physicality of the space. This research was guided by four key aims: 1. Demonstrate a compositional method for immersive spatial audio that references the novel physical environment and the listener’s movement within it. 2. Describe a framework for the development and deployment of a spatial audio visitor technology system. 3. Prototype a naturalistic method for the delivery and navigation of contextual information via audio. 4. Deploy, demonstrate, and evaluate a spatial audio experience within a representative environment. The resulting system makes use of a range of existing technologies to provide a development experience and output that meets a clearly defined set of criteria. Furthermore, a case study application has been developed that demonstrates the use of the system to augment a selection of six paintings in a gallery space. For each of these paintings, a creative spatial composition was produced that demonstrates the principles of spatial composition discussed in this thesis. A spoken informational layer sits on top of this acting as a museum audio guide, featuring navigation using head gestures for a hands-free experience. This thesis presents a detailed discussion of the artistic intentions and techniques employed in the production of the six soundscapes, as well as an evaluation of the resulting application in use in a public gallery space

    Behavior quantification as the missing link between fields: Tools for digital psychiatry and their role in the future of neurobiology

    Full text link
    The great behavioral heterogeneity observed between individuals with the same psychiatric disorder and even within one individual over time complicates both clinical practice and biomedical research. However, modern technologies are an exciting opportunity to improve behavioral characterization. Existing psychiatry methods that are qualitative or unscalable, such as patient surveys or clinical interviews, can now be collected at a greater capacity and analyzed to produce new quantitative measures. Furthermore, recent capabilities for continuous collection of passive sensor streams, such as phone GPS or smartwatch accelerometer, open avenues of novel questioning that were previously entirely unrealistic. Their temporally dense nature enables a cohesive study of real-time neural and behavioral signals. To develop comprehensive neurobiological models of psychiatric disease, it will be critical to first develop strong methods for behavioral quantification. There is huge potential in what can theoretically be captured by current technologies, but this in itself presents a large computational challenge -- one that will necessitate new data processing tools, new machine learning techniques, and ultimately a shift in how interdisciplinary work is conducted. In my thesis, I detail research projects that take different perspectives on digital psychiatry, subsequently tying ideas together with a concluding discussion on the future of the field. I also provide software infrastructure where relevant, with extensive documentation. Major contributions include scientific arguments and proof of concept results for daily free-form audio journals as an underappreciated psychiatry research datatype, as well as novel stability theorems and pilot empirical success for a proposed multi-area recurrent neural network architecture.Comment: PhD thesis cop

    Toward Dynamic Social-Aware Networking Beyond Fifth Generation

    Get PDF
    The rise of the intelligent information world presents significant challenges for the telecommunication industry in meeting the service-level requirements of future applications and incorporating societal and behavioral awareness into the Internet of Things (IoT) objects. Social Digital Twins (SDTs), or Digital Twins augmented with social capabilities, have the potential to revolutionize digital transformation and meet the connectivity, computing, and storage needs of IoT devices in dynamic Fifth-Generation (5G) and Beyond Fifth-Generation (B5G) networks. This research focuses on enabling dynamic social-aware B5G networking. The main contributions of this work include(i) the design of a reference architecture for the orchestration of SDTs at the network edge to accelerate the service discovery procedure across the Social Internet of Things (SIoT); (ii) a methodology to evaluate the highly dynamic system performance considering jointly communication and computing resources; (iii) a set of practical conclusions and outcomes helpful in designing future digital twin-enabled B5G networks. Specifically, we propose an orchestration for SDTs and an SIoT-Edge framework aligned with the Multi-access Edge Computing (MEC) architecture ratified by the European Telecommunications Standards Institute (ETSI). We formulate the optimal placement of SDTs as a Quadratic Assignment Problem (QAP) and propose a graph-based approximation scheme considering the different types of IoT devices, their social features, mobility patterns, and the limited computing resources of edge servers. We also study the appropriate intervals for re-optimizing the SDT deployment at the network edge. The results demonstrate that accounting for social features in SDT placement offers considerable improvements in the SIoT browsing procedure. Moreover, recent advancements in wireless communications, edge computing, and intelligent device technologies are expected to promote the growth of SIoT with pervasive sensing and computing capabilities, ensuring seamless connections among SIoT objects. We then offer a performance evaluation methodology for eXtended Reality (XR) services in edge-assisted wireless networks and propose fluid approximations to characterize the XR content evolution. The approach captures the time and space dynamics of the content distribution process during its transient phase, including time-varying loads, which are affected by arrival, transition, and departure processes. We examine the effects of XR user mobility on both communication and computing patterns. The results demonstrate that communication and computing planes are the key barriers to meeting the requirement for real-time transmissions. Furthermore, due to the trend toward immersive, interactive, and contextualized experiences, new use cases affect user mobility patterns and, therefore, system performance.Cotutelle -yhteisväitöskirj

    Demand Response in Smart Grids

    Get PDF
    The Special Issue “Demand Response in Smart Grids” includes 11 papers on a variety of topics. The success of this Special Issue demonstrates the relevance of demand response programs and events in the operation of power and energy systems at both the distribution level and at the wide power system level. This reprint addresses the design, implementation, and operation of demand response programs, with focus on methods and techniques to achieve an optimized operation as well as on the electricity consumer
    corecore