875 research outputs found

    Splitting method for elliptic equations with line sources

    Full text link
    In this paper, we study the mathematical structure and numerical approximation of elliptic problems posed in a (3D) domain Ω\Omega when the right-hand side is a (1D) line source Λ\Lambda. The analysis and approximation of such problems is known to be non-standard as the line source causes the solution to be singular. Our main result is a splitting theorem for the solution; we show that the solution admits a split into an explicit, low regularity term capturing the singularity, and a high-regularity correction term ww being the solution of a suitable elliptic equation. The splitting theorem states the mathematical structure of the solution; in particular, we find that the solution has anisotropic regularity. More precisely, the solution fails to belong to H1H^1 in the neighbourhood of Λ\Lambda, but exhibits piecewise H2H^2-regularity parallel to Λ\Lambda. The splitting theorem can further be used to formulate a numerical method in which the solution is approximated via its correction function ww. This approach has several benefits. Firstly, it recasts the problem as a 3D elliptic problem with a 3D right-hand side belonging to L2L^2, a problem for which the discretizations and solvers are readily available. Secondly, it makes the numerical approximation independent of the discretization of Λ\Lambda; thirdly, it improves the approximation properties of the numerical method. We consider here the Galerkin finite element method, and show that the singularity subtraction then recovers optimal convergence rates on uniform meshes, i.e., without needing to refine the mesh around each line segment. The numerical method presented in this paper is therefore well-suited for applications involving a large number of line segments. We illustrate this by treating a dataset (consisting of ∌3000\sim 3000 line segments) describing the vascular system of the brain

    Discrete Geometric Structures in Homogenization and Inverse Homogenization with application to EIT

    Get PDF
    We introduce a new geometric approach for the homogenization and inverse homogenization of the divergence form elliptic operator with rough conductivity coefficients σ(x)\sigma(x) in dimension two. We show that conductivity coefficients are in one-to-one correspondence with divergence-free matrices and convex functions s(x)s(x) over the domain Ω\Omega. Although homogenization is a non-linear and non-injective operator when applied directly to conductivity coefficients, homogenization becomes a linear interpolation operator over triangulations of Ω\Omega when re-expressed using convex functions, and is a volume averaging operator when re-expressed with divergence-free matrices. Using optimal weighted Delaunay triangulations for linearly interpolating convex functions, we obtain an optimally robust homogenization algorithm for arbitrary rough coefficients. Next, we consider inverse homogenization and show how to decompose it into a linear ill-posed problem and a well-posed non-linear problem. We apply this new geometric approach to Electrical Impedance Tomography (EIT). It is known that the EIT problem admits at most one isotropic solution. If an isotropic solution exists, we show how to compute it from any conductivity having the same boundary Dirichlet-to-Neumann map. It is known that the EIT problem admits a unique (stable with respect to GG-convergence) solution in the space of divergence-free matrices. As such we suggest that the space of convex functions is the natural space in which to parameterize solutions of the EIT problem

    Optimally Adapted Meshes for Finite Elements of Arbitrary Order and W1p Norms

    Full text link
    Given a function f defined on a bidimensional bounded domain and a positive integer N, we study the properties of the triangulation that minimizes the distance between f and its interpolation on the associated finite element space, over all triangulations of at most N elements. The error is studied in the W1p norm and we consider Lagrange finite elements of arbitrary polynomial order m-1. We establish sharp asymptotic error estimates as N tends to infinity when the optimal anisotropic triangulation is used. A similar problem has been studied earlier, but with the error measured in the Lp norm. The extension of this analysis to the W1p norm is crucial in order to match more closely the needs of numerical PDE analysis, and it is not straightforward. In particular, the meshes which satisfy the optimal error estimate are characterized by a metric describing the local aspect ratio of each triangle and by a geometric constraint on their maximal angle, a second feature that does not appear for the Lp error norm. Our analysis also provides with practical strategies for designing meshes such that the interpolation error satisfies the optimal estimate up to a fixed multiplicative constant. We discuss the extension of our results to finite elements on simplicial partitions of a domain of arbitrary dimension, and we provide with some numerical illustration in two dimensions.Comment: 37 pages, 6 figure

    Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations

    Full text link
    The present paper introduces an efficient and accurate numerical scheme for the solution of a highly anisotropic elliptic equation, the anisotropy direction being given by a variable vector field. This scheme is based on an asymptotic preserving reformulation of the original system, permitting an accurate resolution independently of the anisotropy strength and without the need of a mesh adapted to this anisotropy. The counterpart of this original procedure is the larger system size, enlarged by adding auxiliary variables and Lagrange multipliers. This Asymptotic-Preserving method generalizes the method investigated in a previous paper [arXiv:0903.4984v2] to the case of an arbitrary anisotropy direction field
    • 

    corecore