6 research outputs found

    A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials

    Full text link
    We present a quasi-conforming embedded reproducing kernel particle method (QCE-RKPM) for modeling heterogeneous materials that makes use of techniques not available to mesh-based methods such as the finite element method (FEM) and avoids many of the drawbacks in current embedded and immersed formulations which are based on meshed methods. The different material domains are discretized independently thus avoiding time-consuming, conformal meshing. In this approach, the superposition of foreground (inclusion) and background (matrix) domain integration smoothing cells are corrected by a quasi-conforming quadtree subdivision on the background integration smoothing cells. Due to the non-conforming nature of the background integration smoothing cells near the material interfaces, a variationally consistent (VC) correction for domain integration is introduced to restore integration constraints and thus optimal convergence rates at a minor computational cost. Additional interface integration smoothing cells with area (volume) correction, while non-conforming, can be easily introduced to further enhance the accuracy and stability of the Galerkin solution using VC integration on non-conforming cells. To properly approximate the weak discontinuity across the material interface by a penalty-free Nitsche's method with enhanced coercivity, the interface nodes on the surface of the foreground discretization are also shared with the background discretization. As such, there are no tunable parameters, such as those involved in the penalty type method, to enforce interface compatibility in this approach. The advantage of this meshfree formulation is that it avoids many of the instabilities in mesh-based immersed and embedded methods. The effectiveness of QCE-RKPM is illustrated with several examples

    Comparison of Shape Derivatives Using CutFEM for Ill-posed Bernoulli Free Boundary Problem

    Get PDF
    In this paper we study and compare three types of shape derivatives for free boundary identification problems. The problem takes the form of a severely ill-posed Bernoulli problem where only the Dirichlet condition is given on the free (unknown) boundary, whereas both Dirichlet and Neumann conditions are available on the fixed (known) boundary. Our framework resembles the classical shape optimization method in which a shape dependent cost functional is minimized among the set of admissible domains. The position of the domain is defined implicitly by the level set function. The steepest descent method, based on the shape derivative, is applied for the level set evolution. For the numerical computation of the gradient, we apply the Cut Finite Element Method (CutFEM), that circumvents meshing and re-meshing, without loss of accuracy in the approximations of the involving partial differential models. We consider three different shape derivatives. The first one is the classical shape derivative based on the cost functional with pde constraints defined on the continuous level. The second shape derivative is similar but using a discretized cost functional that allows for the embedding of CutFEM formulations directly in the formulation. Different from the first two methods, the third shape derivative is based on a discrete formulation where perturbations of the domain are built into the variational formulation on the unperturbed domain. This is realized by using the so-called boundary value correction method that was originally introduced to allow for high order approximations to be realized using low order approximation of the domain. The theoretical discussion is illustrated with a series of numerical examples showing that all three approaches produce similar result on the proposed Bernoulli problem

    An adaptive stabilized finite element method for the Darcy's equations with pressure dependent viscosities

    Get PDF
    This work aims to introduce and analyze an adaptive stabilized finite element method to solve a nonlinear Darcy equation with a pressure-dependent viscosity and mixed boundary conditions. We stated the discrete problem's well-posedness and optimal error estimates, in natural norms, under standard assumptions. Next, we introduce and analyze a residual-based a posteriori error estimator for the stabilized scheme. Finally, we present some two- and three-dimensional numerical examples which confirm our theoretical results
    corecore