1,270 research outputs found

    Optimal Transmit Covariance for Ergodic MIMO Channels

    Full text link
    In this paper we consider the computation of channel capacity for ergodic multiple-input multiple-output channels with additive white Gaussian noise. Two scenarios are considered. Firstly, a time-varying channel is considered in which both the transmitter and the receiver have knowledge of the channel realization. The optimal transmission strategy is water-filling over space and time. It is shown that this may be achieved in a causal, indeed instantaneous fashion. In the second scenario, only the receiver has perfect knowledge of the channel realization, while the transmitter has knowledge of the channel gain probability law. In this case we determine an optimality condition on the input covariance for ergodic Gaussian vector channels with arbitrary channel distribution under the condition that the channel gains are independent of the transmit signal. Using this optimality condition, we find an iterative algorithm for numerical computation of optimal input covariance matrices. Applications to correlated Rayleigh and Ricean channels are given.Comment: 22 pages, 14 figures, Submitted to IEEE Transactions on Information Theor

    Dynamic Resource Allocation in Cognitive Radio Networks: A Convex Optimization Perspective

    Full text link
    This article provides an overview of the state-of-art results on communication resource allocation over space, time, and frequency for emerging cognitive radio (CR) wireless networks. Focusing on the interference-power/interference-temperature (IT) constraint approach for CRs to protect primary radio transmissions, many new and challenging problems regarding the design of CR systems are formulated, and some of the corresponding solutions are shown to be obtainable by restructuring some classic results known for traditional (non-CR) wireless networks. It is demonstrated that convex optimization plays an essential role in solving these problems, in a both rigorous and efficient way. Promising research directions on interference management for CR and other related multiuser communication systems are discussed.Comment: to appear in IEEE Signal Processing Magazine, special issue on convex optimization for signal processin

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles

    Artificial-Noise-Aided Secure Multi-Antenna Transmission with Limited Feedback

    Full text link
    We present an optimized secure multi-antenna transmission approach based on artificial-noise-aided beamforming, with limited feedback from a desired single-antenna receiver. To deal with beamformer quantization errors as well as unknown eavesdropper channel characteristics, our approach is aimed at maximizing throughput under dual performance constraints - a connection outage constraint on the desired communication channel and a secrecy outage constraint to guard against eavesdropping. We propose an adaptive transmission strategy that judiciously selects the wiretap coding parameters, as well as the power allocation between the artificial noise and the information signal. This optimized solution reveals several important differences with respect to solutions designed previously under the assumption of perfect feedback. We also investigate the problem of how to most efficiently utilize the feedback bits. The simulation results indicate that a good design strategy is to use approximately 20% of these bits to quantize the channel gain information, with the remainder to quantize the channel direction, and this allocation is largely insensitive to the secrecy outage constraint imposed. In addition, we find that 8 feedback bits per transmit antenna is sufficient to achieve approximately 90% of the throughput attainable with perfect feedback.Comment: to appear in IEEE Transactions on Wireless Communication
    • …
    corecore