19 research outputs found

    Cellular Networks With Finite Precision CSIT: GDoF Optimality of Multi-Cell TIN and Extremal Gains of Multi-Cell Cooperation

    Full text link
    We study the generalized degrees-of-freedom (GDoF) of cellular networks under finite precision channel state information at the transmitters (CSIT). We consider downlink settings modeled by the interfering broadcast channel (IBC) under no multi-cell cooperation, and the overloaded multiple-input-single-output broadcast channel (MISO-BC) under full multi-cell cooperation. We focus on three regimes of interest: the mc-TIN regime, where a scheme based on treating inter-cell interference as noise (mc-TIN) was shown to be GDoF optimal for the IBC; the mc-CTIN regime, where the GDoF region achievable by mc-TIN is convex without the need for time-sharing; and the mc-SLS regime which extends a previously identified regime, where a simple layered superposition (SLS) scheme is optimal for the 3-transmitter-3-user MISO-BC, to overloaded cellular-type networks with more users than transmitters. We first show that the optimality of mc-TIN for the IBC extends to the entire mc-CTIN regime when CSIT is limited to finite precision. The converse proof of this result relies on a new application of aligned images bounds. We then extend the IBC converse proof to the counterpart overloaded MISO-BC, obtained by enabling full transmitter cooperation. This, in turn, is utilized to show that a multi-cell variant of the SLS scheme is optimal in the mc-SLS regime under full multi-cell cooperation, albeit only for 2-cell networks. The overwhelming combinatorial complexity of the GDoF region stands in the way of extending this result to larger networks. Alternatively, we appeal to extremal network analysis, recently introduced by Chan et al., and study the GDoF gain of multi-cell cooperation over mc-TIN in the three regimes of interest. We show that this extremal GDoF gain is bounded by small constants in the mc-TIN and mc-CTIN regimes, yet scales logarithmically with the number of cells in the mc-SLS regime.Comment: Accepted for publication in the IEEE Transactions on Information Theor

    Space-time rate splitting for the MISO BC with magnitude CSIT

    Get PDF
    A novel coding strategy is proposed for a broadcast setting with two transmitter (TX) antennas and two single-antenna receivers (RX). The strategy consists of using space-time block coding to send a common message (to be decoded by both RXs) across the two TX antennas, while each TX antenna also sends a private message to one of the RXs. The relative weight of the private and common messages from each TX antenna is tuned to maximize the instantaneous achievable sum-rate of the channel. Closed-form expressions for the optimal weight factors are derived. In terms of the generalized degrees of freedom (GDoF) metric, the new scheme is able to achieve the sum-GDoF with finite precision channel state information at the transmitter (CSIT) of the two user broadcast channel. Moreover, as opposed to the existing rate-splitting schemes, the proposed scheme yields instantaneous achievable rates that are independent of the channel phases. This property is instrumental for link adaptation when only magnitude CSIT is available. Our numerical results indeed demonstrate the superiority of the scheme for the 2-user setting in case of magnitude CSIT. Extension to a more general K -user scenario is briefly discussed.Grant numbers : SatNEx IV - Satellite Network of Experts IV project. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Secure GDoF of the Z-channel with Finite Precision CSIT: How Robust are Structured Codes?

    Full text link
    Under the assumption of perfect channel state information at the transmitters (CSIT), it is known that structured codes offer significant advantages for secure communication in an interference network, e.g., structured jamming signals based on lattice codes may allow a receiver to decode the sum of the jamming signal and the signal being jammed, even though they cannot be separately resolved due to secrecy constraints, subtract the aggregate jammed signal, and then proceed to decode desired codewords at lower power levels. To what extent are such benefits of structured codes fundamentally limited by uncertainty in CSIT? To answer this question, we explore what is perhaps the simplest setting where the question presents itself -- a Z interference channel with secure communication. Using sum-set inequalities based on Aligned Images bounds we prove that the GDoF benefits of structured codes are lost completely under finite precision CSIT. The secure GDoF region of the Z interference channel is obtained as a byproduct of the analysis.Comment: 34 pages, 10 figure

    Content delivery over multi-antenna wireless networks

    Get PDF
    The past few decades have witnessed unprecedented advances in information technology, which have significantly shaped the way we acquire and process information in our daily lives. Wireless communications has become the main means of access to data through mobile devices, resulting in a continuous exponential growth in wireless data traffic, mainly driven by the demand for high quality content. Various technologies have been proposed by researchers to tackle this growth in 5G and beyond, including the use of increasing number of antenna elements, integrated point-to-multipoint delivery and caching, which constitute the core of this thesis. In particular, we study non-orthogonal content delivery in multiuser multiple-input-single-output (MISO) systems. First, a joint beamforming strategy for simultaneous delivery of broadcast and unicast services is investigated, based on layered division multiplexing (LDM) as a means of superposition coding. The system performance in terms of minimum required power under prescribed quality-of-service (QoS) requirements is examined in comparison with time division multiplexing (TDM). It is demonstrated through simulations that the non-orthogonal delivery strategy based on LDM significantly outperforms the orthogonal strategy based on TDM in terms of system throughput and reliability. To facilitate efficient implementation of the LDM-based beamforming design, we further propose a dual decomposition-based distributed approach. Next, we study an efficient multicast beamforming design in cache-aided multiuser MISO systems, exploiting proactive content placement and coded delivery. It is observed that the complexity of this problem grows exponentially with the number of subfiles delivered to each user in each time slot, which itself grows exponentially with the number of users in the system. Therefore, we propose a low-complexity alternative through time-sharing that limits the number of subfiles that can be received by a user in each time slot. Moreover, a joint design of content delivery and multicast beamforming is proposed to further enhance the system performance, under the constraint on maximum number of subfiles each user can decode in each time slot. Finally, conclusions are drawn in Chapter 5, followed by an outlook for future works.Open Acces

    The electronically steerable parasitic array radiator antenna for wireless communications : signal processing and emerging techniques

    Get PDF
    Smart antenna technology is expected to play an important role in future wireless communication networks in order to use the spectrum efficiently, improve the quality of service, reduce the costs of establishing new wireless paradigms and reduce the energy consumption in wireless networks. Generally, smart antennas exploit multiple widely spaced active elements, which are connected to separate radio frequency (RF) chains. Therefore, they are only applicable to base stations (BSs) and access points, by contrast with modern compact wireless terminals with constraints on size, power and complexity. This dissertation considers an alternative smart antenna system the electronically steerable parasitic array radiator (ESPAR) which uses only a single RF chain, coupled with multiple parasitic elements. The ESPAR antenna is of significant interest because of its flexibility in beamforming by tuning a number of easy-to-implement reactance loads connected to parasitic elements; however, parasitic elements require no expensive RF circuits. This work concentrates on the study of the ESPAR antenna for compact transceivers in order to achieve some emerging techniques in wireless communications. The work begins by presenting the work principle and modeling of the ESPAR antenna and describes the reactance-domain signal processing that is suited to the single active antenna array, which are fundamental factors throughout this thesis. The major contribution in this chapter is the adaptive beamforming method based on the ESPAR antenna. In order to achieve fast convergent beamforming for the ESPAR antenna, a modified minimum variance distortionless response (MVDR) beamfomer is proposed. With reactance-domain signal processing, the ESPAR array obtains a correlation matrix of receive signals as the input to the MVDR optimization problem. To design a set of feasible reactance loads for a desired beampattern, the MVDR optimization problem is reformulated as a convex optimization problem constraining an optimized weight vector close to a feasible solution. Finally, the necessary reactance loads are optimized by iterating the convex problem and a simple projector. In addition, the generic algorithm-based beamforming method has also studied for the ESPAR antenna. Blind interference alignment (BIA) is a promising technique for providing an optimal degree of freedom in a multi-user, multiple-inputsingle-output broadcast channel, without the requirements of channel state information at the transmitters. Its key is antenna mode switching at the receive antenna. The ESPAR antenna is able to provide a practical solution to beampattern switching (one kind of antenna mode switching) for the implementation of BIA. In this chapter, three beamforming methods are proposed for providing the required number of beampatterns that are exploited across one super symbol for creating the channel fluctuation patterns seen by receivers. These manually created channel fluctuation patterns are jointly combined with the designed spacetime precoding in order to align the inter-user interference. Furthermore, the directional beampatterns designed in the ESPAR antenna are demonstrated to improve the performance of BIA by alleviating the noise amplification. The ESPAR antenna is studied as the solution to interference mitigation in small cell networks. Specifically, ESPARs analog beamforming presented in the previous chapter is exploited to suppress inter-cell interference for the system scenario, scheduling only one user to be served by each small BS at a single time. In addition, the ESPAR-based BIA is employed to mitigate both inter-cell and intracell interference for the system scenario, scheduling a small number of users to be simultaneously served by each small BS for a single time. In the cognitive radio (CR) paradigm, the ESPAR antenna is employed for spatial spectrum sensing in order to utilize the new angle dimension in the spectrum space besides the conventional frequency, time and space dimensions. The twostage spatial spectrum sensing method is proposed based on the ESPAR antenna being targeted at identifying white spectrum space, including the new angle dimension. At the first stage, the occupancy of a specific frequency band is detected by conventional spectrum-sensing methods, including energy detector and eigenvalue-based methods implemented with the switched-beam ESPAR antenna. With the presence of primary users, their directions are estimated at the second stage, by high-resolution angle-of-arrival (AoA) estimation algorithms. Specifically, the compressive sensing technology has been studied for AoA detection with the ESPAR antenna, which is demonstrated to provide high-resolution estimation results and even to outperform the reactance-domain multiple signal classification
    corecore