23,810 research outputs found

    Optimality of Geometric Local Search

    Get PDF
    International audienceUp until a decade ago, the algorithmic status of several basic NP-complete problems in geometric combinatorial optimisation was unresolved. This included the existence of polynomial-time approximation schemes (PTASs) for hitting set, set cover, dominating set, independent set, and other problems for some basic geometric objects. These past nine years have seen the resolution of all these problems—interestingly, with the same algorithm: local search. In fact, it was shown that for many of these problems, local search with radius λ gives a (1 + O(λ − 1 2))-approximation with running time n O(λ). Setting λ = Θ(epsilon^{−2}) yields a PTAS with a running time of n^O(epsilon^{−2}). On the other hand, hardness results suggest that there do not exist PTASs for these problems with running time poly(n)·f () for any arbitrary f. Thus the main question left open in previous work is in improving the exponent of n to o(epsilon^{−2}). We show that in fact the approximation guarantee of local search cannot be improved for any of these problems. The key ingredient, of independent interest, is a new lower bound on locally expanding planar graphs, which is then used to show the impossibility results. Our construction extends to other graph families with small separators. Acknowledgements We thank the referees for several helpful comments

    A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem

    Get PDF
    We consider solving the ℓ1\ell_1-regularized least-squares (ℓ1\ell_1-LS) problem in the context of sparse recovery, for applications such as compressed sensing. The standard proximal gradient method, also known as iterative soft-thresholding when applied to this problem, has low computational cost per iteration but a rather slow convergence rate. Nevertheless, when the solution is sparse, it often exhibits fast linear convergence in the final stage. We exploit the local linear convergence using a homotopy continuation strategy, i.e., we solve the ℓ1\ell_1-LS problem for a sequence of decreasing values of the regularization parameter, and use an approximate solution at the end of each stage to warm start the next stage. Although similar strategies have been studied in the literature, there have been no theoretical analysis of their global iteration complexity. This paper shows that under suitable assumptions for sparse recovery, the proposed homotopy strategy ensures that all iterates along the homotopy solution path are sparse. Therefore the objective function is effectively strongly convex along the solution path, and geometric convergence at each stage can be established. As a result, the overall iteration complexity of our method is O(log⁥(1/Ï”))O(\log(1/\epsilon)) for finding an Ï”\epsilon-optimal solution, which can be interpreted as global geometric rate of convergence. We also present empirical results to support our theoretical analysis

    On an Irreducible Theory of Complex Systems

    Full text link
    In the paper we present results to develop an irreducible theory of complex systems in terms of self-organization processes of prime integer relations. Based on the integers and controlled by arithmetic only the self-organization processes can describe complex systems by information not requiring further explanations. Important properties of the description are revealed. It points to a special type of correlations that do not depend on the distances between parts, local times and physical signals and thus proposes a perspective on quantum entanglement. Through a concept of structural complexity the description also computationally suggests the possibility of a general optimality condition of complex systems. The computational experiments indicate that the performance of a complex system may behave as a concave function of the structural complexity. A connection between the optimality condition and the majorization principle in quantum algorithms is identified. A global symmetry of complex systems belonging to the system as a whole, but not necessarily applying to its embedded parts is presented. As arithmetic fully determines the breaking of the global symmetry, there is no further need to explain why the resulting gauge forces exist the way they do and not even slightly different.Comment: 8 pages, 3 figures, typos are corrected, some changes and additions are mad

    Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning

    Full text link
    For nonconvex optimization in machine learning, this article proves that every local minimum achieves the globally optimal value of the perturbable gradient basis model at any differentiable point. As a result, nonconvex machine learning is theoretically as supported as convex machine learning with a handcrafted basis in terms of the loss at differentiable local minima, except in the case when a preference is given to the handcrafted basis over the perturbable gradient basis. The proofs of these results are derived under mild assumptions. Accordingly, the proven results are directly applicable to many machine learning models, including practical deep neural networks, without any modification of practical methods. Furthermore, as special cases of our general results, this article improves or complements several state-of-the-art theoretical results on deep neural networks, deep residual networks, and overparameterized deep neural networks with a unified proof technique and novel geometric insights. A special case of our results also contributes to the theoretical foundation of representation learning.Comment: Neural computation, MIT pres

    A Sparse Multi-Scale Algorithm for Dense Optimal Transport

    Full text link
    Discrete optimal transport solvers do not scale well on dense large problems since they do not explicitly exploit the geometric structure of the cost function. In analogy to continuous optimal transport we provide a framework to verify global optimality of a discrete transport plan locally. This allows construction of an algorithm to solve large dense problems by considering a sequence of sparse problems instead. The algorithm lends itself to being combined with a hierarchical multi-scale scheme. Any existing discrete solver can be used as internal black-box.Several cost functions, including the noisy squared Euclidean distance, are explicitly detailed. We observe a significant reduction of run-time and memory requirements.Comment: Published "online first" in Journal of Mathematical Imaging and Vision, see DO

    On the matrix square root via geometric optimization

    Full text link
    This paper is triggered by the preprint "\emph{Computing Matrix Squareroot via Non Convex Local Search}" by Jain et al. (\textit{\textcolor{blue}{arXiv:1507.05854}}), which analyzes gradient-descent for computing the square root of a positive definite matrix. Contrary to claims of~\citet{jain2015}, our experiments reveal that Newton-like methods compute matrix square roots rapidly and reliably, even for highly ill-conditioned matrices and without requiring commutativity. We observe that gradient-descent converges very slowly primarily due to tiny step-sizes and ill-conditioning. We derive an alternative first-order method based on geodesic convexity: our method admits a transparent convergence analysis (<1< 1 page), attains linear rate, and displays reliable convergence even for rank deficient problems. Though superior to gradient-descent, ultimately our method is also outperformed by a well-known scaled Newton method. Nevertheless, the primary value of our work is its conceptual value: it shows that for deriving gradient based methods for the matrix square root, \emph{the manifold geometric view of positive definite matrices can be much more advantageous than the Euclidean view}.Comment: 8 pages, 12 plots, this version contains several more references and more words about the rank-deficient cas

    The Unreasonable Success of Local Search: Geometric Optimization

    Full text link
    What is the effectiveness of local search algorithms for geometric problems in the plane? We prove that local search with neighborhoods of magnitude 1/ϔc1/\epsilon^c is an approximation scheme for the following problems in the Euclidian plane: TSP with random inputs, Steiner tree with random inputs, facility location (with worst case inputs), and bicriteria kk-median (also with worst case inputs). The randomness assumption is necessary for TSP
    • 

    corecore