1,264 research outputs found

    Enabling controlling complex networks with local topological information

    Get PDF
    Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulflling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired fnal state in fnite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefned state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efciently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.The work was partially supported by National Science Foundation of China (61603209), and Beijing Natural Science Foundation (4164086), and the Study of Brain-Inspired Computing System of Tsinghua University program (20151080467), and Ministry of Education, Singapore, under contracts RG28/14, MOE2014-T2-1-028 and MOE2016-T2-1-119. Part of this work is an outcome of the Future Resilient Systems project at the Singapore-ETH Centre (SEC), which is funded by the National Research Foundation of Singapore (NRF) under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. (61603209 - National Science Foundation of China; 4164086 - Beijing Natural Science Foundation; 20151080467 - Study of Brain-Inspired Computing System of Tsinghua University program; RG28/14 - Ministry of Education, Singapore; MOE2014-T2-1-028 - Ministry of Education, Singapore; MOE2016-T2-1-119 - Ministry of Education, Singapore; National Research Foundation of Singapore (NRF) under Campus for Research Excellence and Technological Enterprise (CREATE) programme)Published versio

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    On the genericity properties in networked estimation: Topology design and sensor placement

    Full text link
    In this paper, we consider networked estimation of linear, discrete-time dynamical systems monitored by a network of agents. In order to minimize the power requirement at the (possibly, battery-operated) agents, we require that the agents can exchange information with their neighbors only \emph{once per dynamical system time-step}; in contrast to consensus-based estimation where the agents exchange information until they reach a consensus. It can be verified that with this restriction on information exchange, measurement fusion alone results in an unbounded estimation error at every such agent that does not have an observable set of measurements in its neighborhood. To over come this challenge, state-estimate fusion has been proposed to recover the system observability. However, we show that adding state-estimate fusion may not recover observability when the system matrix is structured-rank (SS-rank) deficient. In this context, we characterize the state-estimate fusion and measurement fusion under both full SS-rank and SS-rank deficient system matrices.Comment: submitted for IEEE journal publicatio

    Sufficient Control of Complex Networks

    Full text link
    In this paper, we propose to study on sufficient control of complex networks which is to control a sufficiently large portion of the network, where only the quantity of controllable nodes matters. To the best of our knowledge, this is the first time that such a problem is investigated. We prove that the sufficient controllability problem can be converted into a minimum cost flow problem, for which an algorithm can be easily devised with polynomial complexity. Further, we study the problem of minimum-cost sufficient control, which is to drive a sufficiently large subset of the network nodes to any predefined state with the minimum cost using a given number of controllers. It is proved that the problem is NP-hard. We propose an ``extended L0L_{\mathrm{0}}-norm-constraint-based Projected Gradient Method" (eLPGM) algorithm which may achieve suboptimal solutions for the problems at small or medium sizes. To tackle the large-scale problems, we propose to convert the control problem into a graph algorithm problem, and devise an efficient low-complexity ``Evenly Divided Control Paths" (EDCP) algorithm to tackle the graph problem. Simulation results on both synthetic and real-life networks are provided, demonstrating the satisfactory performance of the proposed methods
    • …
    corecore