10 research outputs found

    Bibliography on Nondifferentiable Optimization

    Get PDF
    This is a research bibliography with all the advantages and shortcomings that this implies. The author has used it as a bibliographical data base when writing papers, and it is therefore largely a reflection of his own personal research interests. However, it is hoped that this bibliography will nevertheless be of use to others interested in nondifferentiable optimization

    Well-Behavior, Well-Posedness and Nonsmooth Analysis

    Get PDF
    AMS subject classification: 90C30, 90C33.We survey the relationships between well-posedness and well-behavior. The latter notion means that any critical sequence (xn) of a lower semicontinuous function f on a Banach space is minimizing. Here “critical” means that the remoteness of the subdifferential ∂f(xn) of f at xn (i.e. the distance of 0 to ∂f(xn)) converges to 0. The objective function f is not supposed to be convex or smooth and the subdifferential ∂ is not necessarily the usual Fenchel subdifferential. We are thus led to deal with conditions ensuring that a growth property of the subdifferential (or the derivative) of a function implies a growth property of the function itself. Both qualitative questions and quantitative results are considered

    Global Optimisation for Energy System

    Get PDF
    The goal of global optimisation is to find globally optimal solutions, avoiding local optima and other stationary points. The aim of this thesis is to provide more efficient global optimisation tools for energy systems planning and operation. Due to the ongoing increasing of complexity and decentralisation of power systems, the use of advanced mathematical techniques that produce reliable solutions becomes necessary. The task of developing such methods is complicated by the fact that most energy-related problems are nonconvex due to the nonlinear Alternating Current Power Flow equations and the existence of discrete elements. In some cases, the computational challenges arising from the presence of non-convexities can be tackled by relaxing the definition of convexity and identifying classes of problems that can be solved to global optimality by polynomial time algorithms. One such property is known as invexity and is defined by every stationary point of a problem being a global optimum. This thesis investigates how the relation between the objective function and the structure of the feasible set is connected to invexity and presents necessary conditions for invexity in the general case and necessary and sufficient conditions for problems with two degrees of freedom. However, nonconvex problems often do not possess any provable convenient properties, and specialised methods are necessary for providing global optimality guarantees. A widely used technique is solving convex relaxations in order to find a bound on the optimal solution. Semidefinite Programming relaxations can provide good quality bounds, but they suffer from a lack of scalability. We tackle this issue by proposing an algorithm that combines decomposition and linearisation approaches. In addition to continuous non-convexities, many problems in Energy Systems model discrete decisions and are expressed as mixed-integer nonlinear programs (MINLPs). The formulation of a MINLP is of significant importance since it affects the quality of dual bounds. In this thesis we investigate algebraic characterisations of on/off constraints and develop a strengthened version of the Quadratic Convex relaxation of the Optimal Transmission Switching problem. All presented methods were implemented in mathematical modelling and optimisation frameworks PowerTools and Gravity

    Variational problems in transport theory with mass concentration

    Get PDF

    Progress in Nondifferentiable Optimization

    Get PDF
    This volume grew out of the second meeting on nondifferentiable optimization, a field whose most important applications lie in treating problems of decision-making under uncertainty. Since the first meeting, held in 1977, new results were obtained in the theory of optimality conditions, and there was more understanding of the relationships between various classes of nondifferentiable functions. All of these new developments were discussed at the meeting, the reports presented by the participants covering the theory of generalized differentiability, optimality conditions, and the numerical testing and applications of algorithms. After the meeting the participants prepared extended versions of their contributions; these revised papers form the core of this volume, which also contains a bibliography of over 300 references to published work on nondifferentiable optimization, prepared by the editor

    Exploring 3D Shapes through Real Functions

    Get PDF
    This thesis lays in the context of research on representation, modelling and coding knowledge related to digital shapes, where by shape it is meant any individual object having a visual appareance which exists in some two-, three- or higher dimensional space. Digital shapes are digital representations of either physically existing or virtual objects that can be processed by computer applications. While the technological advances in terms of hardware and software have made available plenty of tools for using and interacting with the geometry of shapes, to manipulate and retrieve huge amount of data it is necessary to define methods able to effectively code them. In this thesis a conceptual model is proposed which represents a given 3D object through the coding of its salient features and defines an abstraction of the object, discarding irrelevant details. The approach is based on the shape descriptors defined with respect to real functions, which provide a very useful shape abstraction method for the analysis and structuring of the information contained in the discrete shape model. A distinctive feature of these shape descriptors is their capability of combining topological and geometrical information properties of the shape, giving an abstraction of the main shape features. To fully develop this conceptual model, both theoretical and computational aspects have been considered, related to the definition and the extension of the different shape descriptors to the computational domain. Main emphasis is devoted to the application of these shape descriptors in computational settings; to this aim we display a number of application domains that span from shape retrieval, to shape classification and to best view selection.Questa tesi si colloca nell\u27ambito di ricerca riguardante la rappresentazione, la modellazione e la codifica della conoscenza connessa a forme digitali, dove per forma si intende l\u27aspetto visuale di ogni oggetto che esiste in due, tre o pi? dimensioni. Le forme digitali sono rappresentazioni di oggetti sia reali che virtuali, che possono essere manipolate da un calcolatore. Lo sviluppo tecnologico degli ultimi anni in materia di hardware e software ha messo a disposizione una grande quantit? di strumenti per acquisire, rappresentare e processare la geometria degli oggetti; tuttavia per gestire questa grande mole di dati ? necessario sviluppare metodi in grado di fornirne una codifica efficiente. In questa tesi si propone un modello concettuale che descrive un oggetto 3D attraverso la codifica delle caratteristiche salienti e ne definisce una bozza ad alto livello, tralasciando dettagli irrilevanti. Alla base di questo approccio ? l\u27utilizzo di descrittori basati su funzioni reali in quanto forniscono un\u27astrazione della forma molto utile per analizzare e strutturare l\u27informazione contenuta nel modello discreto della forma. Una peculiarit? di tali descrittori di forma ? la capacit? di combinare propriet? topologiche e geometriche consentendo di astrarne le principali caratteristiche. Per sviluppare questo modello concettuale, ? stato necessario considerare gli aspetti sia teorici che computazionali relativi alla definizione e all\u27estensione in ambito discreto di vari descrittori di forma. Particolare attenzione ? stata rivolta all\u27applicazione dei descrittori studiati in ambito computazionale; a questo scopo sono stati considerati numerosi contesti applicativi, che variano dal riconoscimento alla classificazione di forme, all\u27individuazione della posizione pi? significativa di un oggetto
    corecore