386 research outputs found

    Privacy-Preserving Shortest Path Computation

    Full text link
    Navigation is one of the most popular cloud computing services. But in virtually all cloud-based navigation systems, the client must reveal her location and destination to the cloud service provider in order to learn the fastest route. In this work, we present a cryptographic protocol for navigation on city streets that provides privacy for both the client's location and the service provider's routing data. Our key ingredient is a novel method for compressing the next-hop routing matrices in networks such as city street maps. Applying our compression method to the map of Los Angeles, for example, we achieve over tenfold reduction in the representation size. In conjunction with other cryptographic techniques, this compressed representation results in an efficient protocol suitable for fully-private real-time navigation on city streets. We demonstrate the practicality of our protocol by benchmarking it on real street map data for major cities such as San Francisco and Washington, D.C.Comment: Extended version of NDSS 2016 pape

    Two-Round MPC without Round Collapsing Revisited -- Towards Efficient Malicious Protocols

    Get PDF
    Recent works have made exciting progress on the construction of round optimal, *two-round*, Multi-Party Computation (MPC) protocols. However, most proposals so far are still complex and inefficient. In this work, we improve the simplicity and efficiency of two-round MPC in the setting with dishonest majority and malicious security. Our protocols make use of the Random Oracle (RO) and a generalization of the Oblivious Linear Evaluation (OLE) correlated randomness, called tensor OLE, over a finite field F\mathbb{F}, and achieve the following: - MPC for Boolean Circuits: Our two-round, maliciously secure MPC protocols for computing Boolean circuits, has overall (asymptotic) computational cost O(Sn3logF)O(S\cdot n^3 \cdot \log |\mathbb{F}|), where SS is the size of the circuit computed, nn the number of parties, and F\mathbb{F} a field of characteristic two. The protocols also make black-box calls to a Pseudo-Random Function (PRF). - MPC for Arithmetic Branching Programs (ABPs): Our two-round, information theoretically and maliciously secure protocols for computing ABPs over a general field F\mathbb{F} has overall computational cost O(S1.5n3logF)O(S^{1.5}\cdot n^3\cdot \log |\mathbb{F}|), where SS is the size of ABP computed. Both protocols achieve security levels inverse proportional to the size of the field F|\mathbb{F}|. Our construction is built upon the simple two-round MPC protocols of [Lin-Liu-Wee TCC\u2720], which are only semi-honest secure. Our main technical contribution lies in ensuring malicious security using simple and lightweight checks, which incur only a constant overhead over the complexity of the protocols by Lin, Liu, and Wee. In particular, in the case of computing Boolean circuits, our malicious MPC protocols have the same complexity (up to a constant overhead) as (insecurely) computing Yao\u27s garbled circuits in a distributed fashion. Finally, as an additional contribution, we show how to efficiently generate tensor OLE correlation in fields of characteristic two using OT

    Perfect Secure Computation in Two Rounds

    Get PDF
    We show that any multi-party functionality can be evaluated using a two-round protocol with perfect correctness and perfect semi-honest security, provided that the majority of parties are honest. This settles the round complexity of information-theoretic semi-honest MPC, resolving a longstanding open question (cf. Ishai and Kushilevitz, FOCS 2000). The protocol is efficient for NC1NC^1 functionalities. Furthermore, given black-box access to a one-way function, the protocol can be made efficient for any polynomial functionality, at the cost of only guaranteeing computational security. Our results are based on a new notion of \emph{multi-party randomized encoding} which extends and relaxes the standard notion of randomized encoding of functions (Ishai and Kushilevitz, FOCS 2000). The property of a multi-party randomized encoding (MPRE) is that if the functionality gg is an encoding of the functionality ff, then for any (permitted) coalition of players, their respective outputs and inputs in gg allow them to simulate their respective inputs and outputs in ff, without learning anything else, including the other outputs of ff. We further introduce a new notion of effective algebraic degree, and show that the round complexity of a functionality ff is characterized by the degree of its MPRE. We construct degree-2 MPREs for general functionalities in several settings under different assumptions, and use these constructions to obtain two-round protocols. Our constructions also give rise to new protocols in the client-server model with optimal round complexity

    Secure Computation Protocols for Privacy-Preserving Machine Learning

    Get PDF
    Machine Learning (ML) profitiert erheblich von der Verfügbarkeit großer Mengen an Trainingsdaten, sowohl im Bezug auf die Anzahl an Datenpunkten, als auch auf die Anzahl an Features pro Datenpunkt. Es ist allerdings oft weder möglich, noch gewollt, mehr Daten unter zentraler Kontrolle zu aggregieren. Multi-Party-Computation (MPC)-Protokolle stellen eine Lösung dieses Dilemmas in Aussicht, indem sie es mehreren Parteien erlauben, ML-Modelle auf der Gesamtheit ihrer Daten zu trainieren, ohne die Eingabedaten preiszugeben. Generische MPC-Ansätze bringen allerdings erheblichen Mehraufwand in der Kommunikations- und Laufzeitkomplexität mit sich, wodurch sie sich nur beschränkt für den Einsatz in der Praxis eignen. Das Ziel dieser Arbeit ist es, Privatsphäreerhaltendes Machine Learning mittels MPC praxistauglich zu machen. Zuerst fokussieren wir uns auf zwei Anwendungen, lineare Regression und Klassifikation von Dokumenten. Hier zeigen wir, dass sich der Kommunikations- und Rechenaufwand erheblich reduzieren lässt, indem die aufwändigsten Teile der Berechnung durch Sub-Protokolle ersetzt werden, welche auf die Zusammensetzung der Parteien, die Verteilung der Daten, und die Zahlendarstellung zugeschnitten sind. Insbesondere das Ausnutzen dünnbesetzter Datenrepräsentationen kann die Effizienz der Protokolle deutlich verbessern. Diese Beobachtung verallgemeinern wir anschließend durch die Entwicklung einer Datenstruktur für solch dünnbesetzte Daten, sowie dazugehöriger Zugriffsprotokolle. Aufbauend auf dieser Datenstruktur implementieren wir verschiedene Operationen der Linearen Algebra, welche in einer Vielzahl von Anwendungen genutzt werden. Insgesamt zeigt die vorliegende Arbeit, dass MPC ein vielversprechendes Werkzeug auf dem Weg zu Privatsphäre-erhaltendem Machine Learning ist, und die von uns entwickelten Protokolle stellen einen wesentlichen Schritt in diese Richtung dar.Machine learning (ML) greatly benefits from the availability of large amounts of training data, both in terms of the number of samples, and the number of features per sample. However, aggregating more data under centralized control is not always possible, nor desirable, due to security and privacy concerns, regulation, or competition. Secure multi-party computation (MPC) protocols promise a solution to this dilemma, allowing multiple parties to train ML models on their joint datasets while provably preserving the confidentiality of the inputs. However, generic approaches to MPC result in large computation and communication overheads, which limits the applicability in practice. The goal of this thesis is to make privacy-preserving machine learning with secure computation practical. First, we focus on two high-level applications, linear regression and document classification. We show that communication and computation overhead can be greatly reduced by identifying the costliest parts of the computation, and replacing them with sub-protocols that are tailored to the number and arrangement of parties, the data distribution, and the number representation used. One of our main findings is that exploiting sparsity in the data representation enables considerable efficiency improvements. We go on to generalize this observation, and implement a low-level data structure for sparse data, with corresponding secure access protocols. On top of this data structure, we develop several linear algebra algorithms that can be used in a wide range of applications. Finally, we turn to improving a cryptographic primitive named vector-OLE, for which we propose a novel protocol that helps speed up a wide range of secure computation tasks, within private machine learning and beyond. Overall, our work shows that MPC indeed offers a promising avenue towards practical privacy-preserving machine learning, and the protocols we developed constitute a substantial step in that direction
    corecore