10,743 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Macroeconomics modelling on UK GDP growth by neural computing

    Get PDF
    This paper presents multilayer neural networks used in UK gross domestic product estimation. These networks are trained by backpropagation and genetic algorithm based methods. Different from backpropagation guided by gradients of the performance, the genetic algorithm directly evaluates the performance of multiple sets of neural networks in parallel and then uses the analysed results to breed new networks that tend to be better suited to the problems in hand. It is shown that this guided evolution leads to globally optimal networks and more accurate results, with less adjustment of the algorithm needed

    New acceleration technique for the backpropagation algorithm

    Full text link
    Artificial neural networks have been studied for many years in the hope of achieving human like performance in the area of pattern recognition, speech synthesis and higher level of cognitive process. In the connectionist model there are several interconnected processing elements called the neurons that have limited processing capability. Even though the rate of information transmitted between these elements is limited, the complex interconnection and the cooperative interaction between these elements results in a vastly increased computing power; The neural network models are specified by an organized network topology of interconnected neurons. These networks have to be trained in order them to be used for a specific purpose. Backpropagation is one of the popular methods of training the neural networks. There has been a lot of improvement over the speed of convergence of standard backpropagation algorithm in the recent past. Herein we have presented a new technique for accelerating the existing backpropagation without modifying it. We have used the fourth order interpolation method for the dominant eigen values, by using these we change the slope of the activation function. And by doing so we increase the speed of convergence of the backpropagation algorithm; Our experiments have shown significant improvement in the convergence time for problems widely used in benchmarKing Three to ten fold decrease in convergence time is achieved. Convergence time decreases as the complexity of the problem increases. The technique adjusts the energy state of the system so as to escape from local minima

    Neural Networks for Complex Data

    Full text link
    Artificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Universit\'e Paris

    Modelling of methanol synthesis in a network of forced unsteady-state ring reactors by artificial neural networks for control purposes

    Get PDF
    A numerical model based on artificial neural networks (ANN) was developed to simulate the dynamic behaviour of a three reactors network (or ring reactor), with periodic change of the feed position, when low-pressure methanol synthesis is carried out. A multilayer, feedforward, fully connected ANN was designed and the history stack adaptation algorithm was implemented and tested with quite good results both in terms of model identification and learning rates. The influence of the ANN parameters was addressed, leading to simple guidelines for the selection of their values. A detailed model was used to generate the patterns adopted for the learning and testing phases. The simplified model was finalised to develop a model predictive control scheme in order to maximise methanol yield and to fulfil process constraints

    Variable neural networks for adaptive control of nonlinear systems

    Get PDF
    This paper is concerned with the adaptive control of continuous-time nonlinear dynamical systems using neural networks. A novel neural network architecture, referred to as a variable neural network, is proposed and shown to be useful in approximating the unknown nonlinearities of dynamical systems. In the variable neural networks, the number of basis functions can be either increased or decreased with time, according to specified design strategies, so that the network will not overfit or underfit the data set. Based on the Gaussian radial basis function (GRBF) variable neural network, an adaptive control scheme is presented. The location of the centers and the determination of the widths of the GRBFs in the variable neural network are analyzed to make a compromise between orthogonality and smoothness. The weight-adaptive laws developed using the Lyapunov synthesis approach guarantee the stability of the overall control scheme, even in the presence of modeling error(s). The tracking errors converge to the required accuracy through the adaptive control algorithm derived by combining the variable neural network and Lyapunov synthesis techniques. The operation of an adaptive control scheme using the variable neural network is demonstrated using two simulated example

    Dynamic reconfiguration of human brain networks during learning

    Get PDF
    Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we explore the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.Comment: Main Text: 19 pages, 4 figures Supplementary Materials: 34 pages, 4 figures, 3 table
    corecore