250 research outputs found

    Subject index volumes 1–92

    Get PDF

    NASA Tech Briefs, September 2006

    Get PDF
    Topics covered include: Improving Thermomechanical Properties of SiC/SiC Composites; Aerogel/Particle Composites for Thermoelectric Devices; Patches for Repairing Ceramics and Ceramic- Matrix Composites; Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings; An Alternative for Emergency Preemption of Traffic Lights; Vehicle Transponder for Preemption of Traffic Lights; Automated Announcements of Approaching Emergency Vehicles; Intersection Monitor for Traffic-Light-Preemption System; Full-Duplex Digital Communication on a Single Laser Beam; Stabilizing Microwave Frequency of a Photonic Oscillator; Microwave Oscillators Based on Nonlinear WGM Resonators; Pointing Reference Scheme for Free-Space Optical Communications Systems; High-Level Performance Modeling of SAR Systems; Spectral Analysis Tool 6.2 for Windows; Multi-Platform Avionics Simulator; Silicon-Based Optical Modulator with Ferroelectric Layer; Multiplexing Transducers Based on Tunnel-Diode Oscillators; Scheduling with Automated Resolution of Conflicts; Symbolic Constraint Maintenance Grid; Discerning Trends in Performance Across Multiple Events; Magnetic Field Solver; Computing for Aiming a Spaceborne Bistatic- Radar Transmitter; 4-Vinyl-1,3-Dioxolane-2-One as an Additive for Li-Ion Cells; Probabilistic Prediction of Lifetimes of Ceramic Parts; STRANAL-PMC Version 2.0; Micromechanics and Piezo Enhancements of HyperSizer; Single-Phase Rare-Earth Oxide/Aluminum Oxide Glasses; Tilt/Tip/Piston Manipulator with Base-Mounted Actuators; Measurement of Model Noise in a Hard-Wall Wind Tunnel; Loci-STREAM Version 0.9; The Synergistic Engineering Environment; Reconfigurable Software for Controlling Formation Flying; More About the Tetrahedral Unstructured Software System; Computing Flows Using Chimera and Unstructured Grids; Avoiding Obstructions in Aiming a High-Gain Antenna; Analyzing Aeroelastic Stability of a Tilt-Rotor Aircraft; Tracking Positions and Attitudes of Mars Rovers; Stochastic Evolutionary Algorithms for Planning Robot Paths; Compressible Flow Toolbox; Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines; General Flow-Solver Code for Turbomachinery Applications; Code for Multiblock CFD and Heat-Transfer Computations; Rotating-Pump Design Code; Covering a Crucible with Metal Containing Channels; Repairing Fractured Bones by Use of Bioabsorbable Composites; Kalman Filter for Calibrating a Telescope Focal Plane; Electronic Absolute Cartesian Autocollimator; Fiber-Optic Gratings for Lidar Measurements of Water Vapor; Simulating Responses of Gravitational-Wave Instrumentation; SOFTC: A Software Correlator for VLBI; Progress in Computational Simulation of Earthquakes; Database of Properties of Meteors; Computing Spacecraft Solar-Cell Damage by Charged Particles; Thermal Model of a Current-Carrying Wire in a Vacuum; Program for Analyzing Flows in a Complex Network; Program Predicts Performance of Optical Parametric Oscillators; Processing TES Level-1B Data; Automated Camera Calibration; Tracking the Martian CO2 Polar Ice Caps in Infrared Images; Processing TES Level-2 Data; SmaggIce Version 1.8; Solving the Swath Segment Selection Problem; The Spatial Standard Observer; Less-Complex Method of Classifying MPSK; Improvement in Recursive Hierarchical Segmentation of Data; Using Heaps in Recursive Hierarchical Segmentation of Data; Tool for Statistical Analysis and Display of Landing Sites; Automated Assignment of Proposals to Reviewers; Array-Pattern-Match Compiler for Opportunistic Data Analysis; Pre-Processor for Compression of Multispectral Image Data; Compressing Image Data While Limiting the Effects of Data Losses; Flight Operations Analysis Tool; Improvement in Visual Target Tracking for a Mobile Robot; Software for Simulating Air Traffic; Automated Vectorization of Decision-Based Algorithms; Grayscale Optical Correlator Workbench; "One-Stop Shopping" for Ocean Remote-Sensing and Model Data; State Analysis Database Tool; Generating CAHV and CAHVOmages with Shadows in ROAMS; Improving UDP/IP Transmission Without Increasing Congestion; FORTRAN Versions of Reformulated HFGMC Codes; Program for Editing Spacecraft Command Sequences; Flight-Tested Prototype of BEAM Software; Mission Scenario Development Workbench; Marsviewer; Tool for Analysis and Reduction of Scientific Data; ASPEN Version 3.0; Secure Display of Space-Exploration Images; Digital Front End for Wide-Band VLBI Science Receiver; Multifunctional Tanks for Spacecraft; Lightweight, Segmented, Mostly Silicon Telescope Mirror; Assistant for Analyzing Tropical-Rain-Mapping Radar Data; and Anion-Intercalating Cathodes for High-Energy- Density Cells

    Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

    Get PDF
    A number of techniques for Radio Frequency (RF) source location for wide bandwidth signals have been described that utilize coherent signal subspace processing, but often suffer from limitations such as the requirement for preliminary source location estimation, the need to apply the technique iteratively, computational expense or others. This dissertation examines a method that performs subspace processing of the data from a bank of true time delay beamformers. The spatial diversity of the beamformer bank alleviates the need for a preliminary estimate while simultaneously reducing the dimensionality of subsequent signal subspace processing resulting in computational efficiency. The pointing direction of the true time delay beams is independent of frequency, which results in a mapping from element space to beam space that is wide bandwidth in nature. This dissertation reviews previous methods, introduces the present method, presents simulation results that demonstrate the assertions, discusses an analysis of performance in relation to the Cramer-Rao Lower Bound (CRLB) with various levels of noise in the system, and discusses computational efficiency. One limitation of the method is that in practice it may be appropriate for systems that can tolerate a limited field of view. The application of Electronic Intelligence is one such application. This application is discussed as one that is appropriate for a method exhibiting high resolution of very wide bandwidth closely spaced sources and often does not require a wide field of view. In relation to system applications, this dissertation also discusses practical employment of the novel method in terms of antenna elements, arrays, platforms, engagement geometries, and other parameters. The true time delay beam space method is shown through modeling and simulation to be capable of resolving closely spaced very wideband sources over a relevant field of view in a single algorithmic pass, requiring no course preliminary estimation, and exhibiting low computational expense superior to many previous wideband coherent integration techniques

    Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

    Get PDF
    A number of techniques for Radio Frequency (RF) source location for wide bandwidth signals have been described that utilize coherent signal subspace processing, but often suffer from limitations such as the requirement for preliminary source location estimation, the need to apply the technique iteratively, computational expense or others. This dissertation examines a method that performs subspace processing of the data from a bank of true time delay beamformers. The spatial diversity of the beamformer bank alleviates the need for a preliminary estimate while simultaneously reducing the dimensionality of subsequent signal subspace processing resulting in computational efficiency. The pointing direction of the true time delay beams is independent of frequency, which results in a mapping from element space to beam space that is wide bandwidth in nature. This dissertation reviews previous methods, introduces the present method, presents simulation results that demonstrate the assertions, discusses an analysis of performance in relation to the Cramer-Rao Lower Bound (CRLB) with various levels of noise in the system, and discusses computational efficiency. One limitation of the method is that in practice it may be appropriate for systems that can tolerate a limited field of view. The application of Electronic Intelligence is one such application. This application is discussed as one that is appropriate for a method exhibiting high resolution of very wide bandwidth closely spaced sources and often does not require a wide field of view. In relation to system applications, this dissertation also discusses practical employment of the novel method in terms of antenna elements, arrays, platforms, engagement geometries, and other parameters. The true time delay beam space method is shown through modeling and simulation to be capable of resolving closely spaced very wideband sources over a relevant field of view in a single algorithmic pass, requiring no course preliminary estimation, and exhibiting low computational expense superior to many previous wideband coherent integration techniques

    Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication

    Get PDF
    Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future

    BRUISE DETECTION IN APPLES USING 3D INFRARED IMAGING AND MACHINE LEARNING TECHNOLOGIES

    Get PDF
    Bruise detection plays an important role in fruit grading. A bruise detection system capable of finding and removing damaged products on the production lines will distinctly improve the quality of fruits for sale, and consequently improve the fruit economy. This dissertation presents a novel automatic detection system based on surface information obtained from 3D near-infrared imaging technique for bruised apple identification. The proposed 3D bruise detection system is expected to provide better performance in bruise detection than the existing 2D systems. We first propose a mesh denoising filter to reduce noise effect while preserving the geometric features of the meshes. Compared with several existing mesh denoising filters, the proposed filter achieves better performance in reducing noise effect as well as preserving bruised regions in 3D meshes of bruised apples. Next, we investigate two different machine learning techniques for the identification of bruised apples. The first technique is to extract hand-crafted feature from 3D meshes, and train a predictive classifier based on hand-crafted features. It is shown that the predictive model trained on the proposed hand-crafted features outperforms the same models trained on several other local shape descriptors. The second technique is to apply deep learning to learn the feature representation automatically from the mesh data, and then use the deep learning model or a new predictive model for the classification. The optimized deep learning model achieves very high classification accuracy, and it outperforms the performance of the detection system based on the proposed hand-crafted features. At last, we investigate GPU techniques for accelerating the proposed apple bruise detection system. Specifically, the dissertation proposes a GPU framework, implemented in CUDA, for the acceleration of the algorithm that extracts vertex-based local binary patterns. Experimental results show that the proposed GPU program speeds up the process of extracting local binary patterns by 5 times compared to a single-core CPU program

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Laboratory directed research and development. FY 1995 progress report

    Full text link

    The design and analysis of novel integrated phase-change photonic memory and computing devices

    Get PDF
    The current massive growth in data generation and communication challenges traditional computing and storage paradigms. The integrated silicon photonic platform may alleviate the physical limitations resulting from the use of electrical interconnects and the conventional von Neuman computing architecture, due to its intrinsic energy and bandwidth advantages. This work focuses on the development of the phase-change all-photonic memory (PPCM), a device potentially enabling the transition from the electrical to the optical domain by providing the (previously unavailable) non-volatile all-photonic storage functionality. PPCM devices allow for all-optical encoding of the information on the crystal fraction of a waveguide-implemented phase-change material layer, here Ge2Sb2Te5, which in turn modulates the transmitted signal amplitude. This thesis reports novel developments of the numerical methods necessary to emulate the physics of PPCM device operation and performance characteristics, illustrating solutions enabling the realization of a simulation framework modelling the inherently three-dimensional and self-influencing optical, thermal and phase-switching behaviour of PPCM devices. This thesis also depicts an innovative, fast and cost-effective method to characterise the key optical properties of phase-change materials (upon which the performance of PPCM devices depend), exploiting the reflection pattern of a purposely built layer stack, combined with a smart fit algorithm adapting potential solutions drawn from the scientific literature. The simulation framework developed in the thesis is used to analyse reported PPCM experimental results. Numerous sources of uncertainty are underlined, whose systematic analysis reduced to the peculiar non-linear optical properties of Ge2Sb2Te5. Yet, the data fit process validates both the simulation tool and the remaining physical assumptions, as the model captures the key aspects of the PPCM at high optical intensity, and reliably and accurately predicts its behaviour at low intensity, enabling to investigate its underpinning physical mechanisms. Finally, a novel PPCM memory architecture, exploiting the interaction of a much-reduced Ge2Sb2Te5 volume with a plasmonic resonant nanoantenna, is proposed and numerically investigated. The architecture concept is described and the memory functionality is demonstrated, underlining its potential energy and speed improvement on the conventional device by up to two orders of magnitude.Engineering and Physical Sciences Research Council (EPSRC
    • …
    corecore