887 research outputs found

    Optimal Vaccine Allocation to Control Epidemic Outbreaks in Arbitrary Networks

    Full text link
    We consider the problem of controlling the propagation of an epidemic outbreak in an arbitrary contact network by distributing vaccination resources throughout the network. We analyze a networked version of the Susceptible-Infected-Susceptible (SIS) epidemic model when individuals in the network present different levels of susceptibility to the epidemic. In this context, controlling the spread of an epidemic outbreak can be written as a spectral condition involving the eigenvalues of a matrix that depends on the network structure and the parameters of the model. We study the problem of finding the optimal distribution of vaccines throughout the network to control the spread of an epidemic outbreak. We propose a convex framework to find cost-optimal distribution of vaccination resources when different levels of vaccination are allowed. We also propose a greedy approach with quality guarantees for the case of all-or-nothing vaccination. We illustrate our approaches with numerical simulations in a real social network

    Optimal curing policy for epidemic spreading over a community network with heterogeneous population

    Full text link
    The design of an efficient curing policy, able to stem an epidemic process at an affordable cost, has to account for the structure of the population contact network supporting the contagious process. Thus, we tackle the problem of allocating recovery resources among the population, at the lowest cost possible to prevent the epidemic from persisting indefinitely in the network. Specifically, we analyze a susceptible-infected-susceptible epidemic process spreading over a weighted graph, by means of a first-order mean-field approximation. First, we describe the influence of the contact network on the dynamics of the epidemics among a heterogeneous population, that is possibly divided into communities. For the case of a community network, our investigation relies on the graph-theoretical notion of equitable partition; we show that the epidemic threshold, a key measure of the network robustness against epidemic spreading, can be determined using a lower-dimensional dynamical system. Exploiting the computation of the epidemic threshold, we determine a cost-optimal curing policy by solving a convex minimization problem, which possesses a reduced dimension in the case of a community network. Lastly, we consider a two-level optimal curing problem, for which an algorithm is designed with a polynomial time complexity in the network size.Comment: to be published on Journal of Complex Network

    Traffic Control for Network Protection Against Spreading Processes

    Full text link
    Epidemic outbreaks in human populations are facilitated by the underlying transportation network. We consider strategies for containing a viral spreading process by optimally allocating a limited budget to three types of protection resources: (i) Traffic control resources, (ii), preventative resources and (iii) corrective resources. Traffic control resources are employed to impose restrictions on the traffic flowing across directed edges in the transportation network. Preventative resources are allocated to nodes to reduce the probability of infection at that node (e.g. vaccines), and corrective resources are allocated to nodes to increase the recovery rate at that node (e.g. antidotes). We assume these resources have monetary costs associated with them, from which we formalize an optimal budget allocation problem which maximizes containment of the infection. We present a polynomial time solution to the optimal budget allocation problem using Geometric Programming (GP) for an arbitrary weighted and directed contact network and a large class of resource cost functions. We illustrate our approach by designing optimal traffic control strategies to contain an epidemic outbreak that propagates through a real-world air transportation network.Comment: arXiv admin note: text overlap with arXiv:1309.627

    Optimal Resource Allocation for Network Protection Against Spreading Processes

    Get PDF
    We study the problem of containing spreading processes in arbitrary directed networks by distributing protection resources throughout the nodes of the network. We consider two types of protection resources are available: (i) Preventive resources able to defend nodes against the spreading (such as vaccines in a viral infection process), and (ii) corrective resources able to neutralize the spreading after it has reached a node (such as antidotes). We assume that both preventive and corrective resources have an associated cost and study the problem of finding the cost-optimal distribution of resources throughout the nodes of the network. We analyze these questions in the context of viral spreading processes in directed networks. We study the following two problems: (i) Given a fixed budget, find the optimal allocation of preventive and corrective resources in the network to achieve the highest level of containment, and (ii) when a budget is not specified, find the minimum budget required to control the spreading process. We show that both resource allocation problems can be solved in polynomial time using Geometric Programming (GP) for arbitrary directed graphs of nonidentical nodes and a wide class of cost functions. Furthermore, our approach allows to optimize simultaneously over both preventive and corrective resources, even in the case of cost functions being node-dependent. We illustrate our approach by designing optimal protection strategies to contain an epidemic outbreak that propagates through an air transportation network

    Worst-Case Scenarios for Greedy, Centrality-Based Network Protection Strategies

    Full text link
    The task of allocating preventative resources to a computer network in order to protect against the spread of viruses is addressed. Virus spreading dynamics are described by a linearized SIS model and protection is framed by an optimization problem which maximizes the rate at which a virus in the network is contained given finite resources. One approach to problems of this type involve greedy heuristics which allocate all resources to the nodes with large centrality measures. We address the worst case performance of such greedy algorithms be constructing networks for which these greedy allocations are arbitrarily inefficient. An example application is presented in which such a worst case network might arise naturally and our results are verified numerically by leveraging recent results which allow the exact optimal solution to be computed via geometric programming
    • …
    corecore