61 research outputs found

    Artificial Noise-Aided Biobjective Transmitter Optimization for Service Integration in Multi-User MIMO Gaussian Broadcast Channel

    Full text link
    This paper considers an artificial noise (AN)-aided transmit design for multi-user MIMO systems with integrated services. Specifically, two sorts of service messages are combined and served simultaneously: one multicast message intended for all receivers and one confidential message intended for only one receiver and required to be perfectly secure from other unauthorized receivers. Our interest lies in the joint design of input covariances of the multicast message, confidential message and artificial noise (AN), such that the achievable secrecy rate and multicast rate are simultaneously maximized. This problem is identified as a secrecy rate region maximization (SRRM) problem in the context of physical-layer service integration. Since this bi-objective optimization problem is inherently complex to solve, we put forward two different scalarization methods to convert it into a scalar optimization problem. First, we propose to prefix the multicast rate as a constant, and accordingly, the primal biobjective problem is converted into a secrecy rate maximization (SRM) problem with quality of multicast service (QoMS) constraint. By varying the constant, we can obtain different Pareto optimal points. The resulting SRM problem can be iteratively solved via a provably convergent difference-of-concave (DC) algorithm. In the second method, we aim to maximize the weighted sum of the secrecy rate and the multicast rate. Through varying the weighted vector, one can also obtain different Pareto optimal points. We show that this weighted sum rate maximization (WSRM) problem can be recast into a primal decomposable form, which is amenable to alternating optimization (AO). Then we compare these two scalarization methods in terms of their overall performance and computational complexity via theoretical analysis as well as numerical simulation, based on which new insights can be drawn.Comment: 14 pages, 5 figure

    A Modified Levenberg-Marquardt Method for the Bidirectional Relay Channel

    Full text link
    This paper presents an optimization approach for a system consisting of multiple bidirectional links over a two-way amplify-and-forward relay. It is desired to improve the fairness of the system. All user pairs exchange information over one relay station with multiple antennas. Due to the joint transmission to all users, the users are subject to mutual interference. A mitigation of the interference can be achieved by max-min fair precoding optimization where the relay is subject to a sum power constraint. The resulting optimization problem is non-convex. This paper proposes a novel iterative and low complexity approach based on a modified Levenberg-Marquardt method to find near optimal solutions. The presented method finds solutions close to the standard convex-solver based relaxation approach.Comment: submitted to IEEE Transactions on Vehicular Technology We corrected small mistakes in the proof of Lemma 2 and Proposition
    • …
    corecore