474 research outputs found

    Collaborative beamforming schemes for wireless sensor networks with energy harvesting capabilities

    Get PDF
    In recent years, wireless sensor networks have attracted considerable attention in the research community. Their development, induced by technological advances in microelectronics, wireless networking and battery fabrication, is mainly motivated by a large number of possible applications such as environmental monitoring, industrial process control, goods tracking, healthcare applications, to name a few. Due to the unattended nature of wireless sensor networks, battery replacement can be either too costly or simply not feasible. In order to cope with this problem and prolong the network lifetime, energy efficient data transmission protocols have to be designed. Motivated by this ultimate goal, this PhD dissertation focuses on the design of collaborative beamforming schemes for wireless sensor networks with energy harvesting capabilities. On the one hand, by resorting to collaborative beamforming, sensors are able to convey a common message to a distant base station, in an energy efficient fashion. On the other, sensor nodes with energy harvesting capabilities promise virtually infinite network lifetime. Nevertheless, in order to realize collaborative beamforming, it is necessary that sensors align their transmitted signals so that they are coherently combined at the destination. Moreover, sensor nodes have to adapt their transmissions according to the amounts of harvested energy over time. First, this dissertation addresses the scenario where two sensor nodes (one of them capable of harvesting ambient energy) collaboratively transmit a common message to a distant base station. In this setting, we show that the optimal power allocation policy at the energy harvesting sensor can be computed independently (i.e., without the knowledge of the optimal policy at the battery operated one). Furthermore, we propose an iterative algorithm that allows us to compute the optimal policy at the battery operated sensor, as well. The insights gained by the aforementioned scenario allow us to generalize the analysis to a system with multiple energy harvesting sensors. In particular, we develop an iterative algorithm which sequentially optimizes the policies for all the sensors until some convergence criterion is satisfied. For the previous scenarios, this PhD dissertation evaluates the impact of total energy harvested, number of sensors and limited energy storage capacity on the system performance. Finally, we consider some practical schemes for carrier synchronization, required in order to implement collaborative beamforming in wireless sensor networks. To that end, we analyze two algorithms for decentralized phase synchronization: (i) the one bit of feedback algorithm previously proposed in the literature; and (ii) a decentralized phase synchronization algorithm that we propose. As for the former, we analyze the impact of additive noise on the beamforming gain and algorithm’s convergence properties, and, subsequently, we propose a variation that performs sidelobe control. As for the latter, the sensors are allowed to choose their respective training timeslots randomly, relieving the base station of the burden associated with centralized coordination. In this context, this PhD dissertation addresses the impact of number of timeslots and additive noise on the achieved received signal strength and throughputEn los últimos años, las redes de sensores inalámbricas han atraído considerable atención en la comunidad investigadora. Su desarrollo, impulsado por recientes avances tecnológicos en microelectrónica y radio comunicaciones, está motivado principalmente por un gran abanico de aplicaciones, tales como: Monitorización ambiental, control de procesos industriales, seguimiento de mercancías, telemedicina, entre otras. En las redes de sensores inalámbricas, es primordial el diseño de protocolos de transmisión energéticamente eficientes ya que no se contempla el reemplazo de baterías debido a su coste y/o complejidad. Motivados por esta problemática, esta tesis doctoral se centra en el diseño de esquemas de conformación de haz distribuidos para redes de sensores, en el que los nodos son capaces de almacenar energía del entorno, lo que en inglés se denomina energy harvesting. En primer lugar, esta tesis doctoral aborda el escenario en el que dos sensores (uno de ellos capaz de almacenar energía del ambiente) transmiten conjuntamente un mensaje a una estación base. En este contexto, se demuestra que la política de asignación de potencia óptima en el sensor con energy harvesting puede ser calculada de forma independiente (es decir, sin el conocimiento de la política óptima del otro sensor). A continuación, se propone un algoritmo iterativo que permite calcular la política óptima en el sensor que funciona con baterías. Este esquema es posteriormente generalizado para el caso de múltiples sensores. En particular, se desarrolla un algoritmo iterativo que optimiza las políticas de todos los sensores secuencialmente. Para los escenarios anteriormente mencionados, esta tesis evalúa el impacto de la energía total cosechada, número de sensores y la capacidad de la batería. Por último, se aborda el problema de sincronización de fase en los sensores con el fin de poder realizar la conformación de haz de forma distribuida. Para ello, se analizan dos algoritmos para la sincronización de fase descentralizados: (i) el algoritmo "one bit of feedback" previamente propuesto en la literatura, y (ii) un algoritmo de sincronización de fase descentralizado que se propone en esta tesis. En el primer caso, se analiza el impacto del ruido aditivo en la ganancia y la convergencia del algoritmo. Además, se propone una variación que realiza el control de lóbulos secundarios. En el segundo esquema, los sensores eligen intervalos de tiempo de forma aleatoria para transmitir y posteriormente reciben información de la estación base para ajustar sus osciladores. En este escenario, esta tesis doctoral aborda el impacto del número de intervalos de tiempo y el ruido aditivo sobre la ganancia de conformación

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Optimal Sensor Collaboration for Parameter Tracking Using Energy Harvesting Sensors

    Full text link
    In this paper, we design an optimal sensor collaboration strategy among neighboring nodes while tracking a time-varying parameter using wireless sensor networks in the presence of imperfect communication channels. The sensor network is assumed to be self-powered, where sensors are equipped with energy harvesters that replenish energy from the environment. In order to minimize the mean square estimation error of parameter tracking, we propose an online sensor collaboration policy subject to real-time energy harvesting constraints. The proposed energy allocation strategy is computationally light and only relies on the second-order statistics of the system parameters. For this, we first consider an offline non-convex optimization problem, which is solved exactly using semidefinite programming. Based on the offline solution, we design an online power allocation policy that requires minimal online computation and satisfies the dynamics of energy flow at each sensor. We prove that the proposed online policy is asymptotically equivalent to the optimal offline solution and show its convergence rate and robustness. We empirically show that the estimation performance of the proposed online scheme is better than that of the online scheme when channel state information about the dynamical system is available in the low SNR regime. Numerical results are conducted to demonstrate the effectiveness of our approach

    A Fair Resource Allocation Algorithm for Data and Energy Integrated Communication Networks

    Get PDF
    With the rapid advancement of wireless network technologies and the rapid increase in the number of mobile devices, mobile users (MUs) have an increasing high demand to access the Internet with guaranteed quality-of-service (QoS). Data and energy integrated communication networks (DEINs) are emerging as a new type of wireless networks that have the potential to simultaneously transfer wireless energy and information via the same base station (BS). This means that a physical BS is virtualized into two parts: one is transferring energy and the other is transferring information. The former is called virtual energy base station (eBS) and the latter is named as data base station (dBS). One important issue in such setting is dynamic resource allocation. Here the resource concerned includes both power and time. In this paper, we propose a fair data-and-energy resource allocation algorithm for DEINs by jointly designing the downlink energy beamforming and a power-and-time allocation scheme, with the consideration of finite capacity batteries at MUs and power sensitivity of radio frequency (RF) to direct current (DC) conversion circuits. Simulation results demonstrate that our proposed algorithm outperforms the existing algorithms in terms of fairness, beamforming design, sensitivity, and average throughput.</jats:p

    Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-antenna Dense Small Cell Networks

    Get PDF
    This paper studies the performance of cache-enabled dense small cell networks consisting of multi-antenna sub-6 GHz and millimeter-wave base stations. Different from the existing works which only consider a single antenna at each base station, the optimal content placement is unknown when the base stations have multiple antennas. We first derive the successful content delivery probability by accounting for the key channel features at sub-6 GHz and mmWave frequencies. The maximization of the successful content delivery probability is a challenging problem. To tackle it, we first propose a constrained cross-entropy algorithm which achieves the near-optimal solution with moderate complexity. We then develop another simple yet effective heuristic probabilistic content placement scheme, termed two-stair algorithm, which strikes a balance between caching the most popular contents and achieving content diversity. Numerical results demonstrate the superior performance of the constrained cross-entropy method and that the two-stair algorithm yields significantly better performance than only caching the most popular contents. The comparisons between the sub-6 GHz and mmWave systems reveal an interesting tradeoff between caching capacity and density for the mmWave system to achieve similar performance as the sub-6 GHz system.Comment: 14 pages; Accepted to appear in IEEE Transactions on Wireless Communication

    Cognition-inspired 5G cellular networks: a review and the road ahead

    Get PDF
    Despite the evolution of cellular networks, spectrum scarcity and the lack of intelligent and autonomous capabilities remain a cause for concern. These problems have resulted in low network capacity, high signaling overhead, inefficient data forwarding, and low scalability, which are expected to persist as the stumbling blocks to deploy, support and scale next-generation applications, including smart city and virtual reality. Fifth-generation (5G) cellular networking, along with its salient operational characteristics - including the cognitive and cooperative capabilities, network virtualization, and traffic offload - can address these limitations to cater to future scenarios characterized by highly heterogeneous, ultra-dense, and highly variable environments. Cognitive radio (CR) and cognition cycle (CC) are key enabling technologies for 5G. CR enables nodes to explore and use underutilized licensed channels; while CC has been embedded in CR nodes to learn new knowledge and adapt to network dynamics. CR and CC have brought advantages to a cognition-inspired 5G cellular network, including addressing the spectrum scarcity problem, promoting interoperation among heterogeneous entities, and providing intelligence and autonomous capabilities to support 5G core operations, such as smart beamforming. In this paper, we present the attributes of 5G and existing state of the art focusing on how CR and CC have been adopted in 5G to provide spectral efficiency, energy efficiency, improved quality of service and experience, and cost efficiency. This main contribution of this paper is to complement recent work by focusing on the networking aspect of CR and CC applied to 5G due to the urgent need to investigate, as well as to further enhance, CR and CC as core mechanisms to support 5G. This paper is aspired to establish a foundation and to spark new research interest in this topic. Open research opportunities and platform implementation are also presented to stimulate new research initiatives in this exciting area
    corecore