254 research outputs found

    Towards Automation and Improved Fuel Economy with System Architecture Design of a Non-Road Working Machine

    Get PDF
    Increasing levels of automation and interest in fuel economy have been affecting the system design of non-road working machines. Both fuel economy and automation have been active research areas in non-road working machines. It is unlikely that in the near future electrification will solve the energy challenges of machines operating for long periods in forests, mines or fields. Therefore, it is necessary to increase the fuel efficiency of such machines with conventional technology, taking into account the fact that automation, along with the diversity of subcontractors and performance requirements, has increased the complexity of these machines. A modular abstraction layer architecture is proposed for the machine level to support the development of automation and comparison of fuel economy. The architecture is developed and selected on the premise that a machine is operated with different automation levels between manual and autonomous operation and employs alternative control methods for different operation conditions. The designed system architecture is compared with alternative approaches by using trade-off analysis with defined scoring functions. For improving fuel economy and demonstrating the capability of the designed architecture, a modular power management architecture is realised to meet the performance requirements of the machine. This architecture breaks the system down into smaller modules to facilitate design and development. Further, the architecture separates control of the power sources from the consumers, providing a new degree of freedom in designing the subsystems, as the consumer modules are not coupled with the engine. The improvement in fuel economy is based on the MinRpm control strategy, which is integrated with the power management architecture. The objective of MinRpm is to minimise the rotational speed of the engine, which leads to the engine operating with higher partial loads and in a higher fuel efficiency region. In addition, the components and subsystems that use relative constant torque use less energy when the rotational speed is lower. Devices of this kind are typically fans, fixed displacement pumps and oil coolers, in which the torque demand is not highly dependent on the rotational speed of the engine. The proposed modular power management architecture with the MinRpm control strategy does not require any new components to make improvements in fuel economy, which, in turn, reduces the implementation costs. In both simulations and in experimental tests with a municipal wheel loader, the control method resulted in fuel savings of 11 to 22% compared with a series-production machine on the market. The comparison is realised by integrating the emulated series-production machine control with the same system architecture that was developed for the power management system with MinRpm approach. Therefore, both control methods are realised with the same wheel loader, which eliminates discrepancy of the component properties. Realisation of the alternative control methods in the designed system architecture demonstrates the compatibility needed when the machine is operated with different operating modes from manual to autonomous. Before fully autonomous machines become real, a different level of automation is needed to perform efficiently and safely in all operation conditions. Therefore, the designed system architecture is capable of rerouting control signals and control flows, while safety features are guaranteed when the control mode is changed

    Green Economy in the Transport Sector

    Get PDF
    This open access book is interdisciplinary and provides cross-sectoral and multi-dimensional exploration of sustainable development and transportation in South Africa. Drawing on work from different disciplines, the book contributes not only to academia but also seeks to inform urban and regional policy with the view of contributing to the national aspirations of South Africa as espoused in the National Development Plan (NDP), 2030, National Spatial Development Framework (NSDF) Draft (2019), National Climate Change Adaptation Strategy (NCASS) Draft (2019), Green Transport Strategy for South Africa (2018–2050), and National Transportation Plan (NATMAP), 2050. Adopting a multi-dimensional assessment, the book provides a background for co-production concerning climate change, sustainable development, and transportation in the Global South. The book contributes in its analysis of the institutional and legislative framework that relates to the climate change, skills and knowledge transfer, sustainable development, and transportation in South Africa, as these are responsible for the evolution of the green economy and transport sector in the country. The connections among different sectors and issues such as environment, transport modes, technology innovation, vehicle management and emission control, skills and knowledge transfer, legislative and policy framework, and the wider objectives of the sustainable development goals (SDGs), especially goals 11 to 13. The success stories relating to climate change, sustainable development, and transportation in South Africa are identified together with the best possible practices that may inform better environmental, urban and regional planning, policy, practice, and management

    Volume 1 – Symposium

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group A: Materials Group B: System design & integration Group C: Novel system solutions Group D: Additive manufacturing Group E: Components Group F: Intelligent control Group G: Fluids Group H | K: Pumps Group I | L: Mobile applications Group J: Fundamental

    Applied Mathematics to Mechanisms and Machines

    Get PDF
    This book brings together all 16 articles published in the Special Issue "Applied Mathematics to Mechanisms and Machines" of the MDPI Mathematics journal, in the section “Engineering Mathematics”. The subject matter covered by these works is varied, but they all have mechanisms as the object of study and mathematics as the basis of the methodology used. In fact, the synthesis, design and optimization of mechanisms, robotics, automotives, maintenance 4.0, machine vibrations, control, biomechanics and medical devices are among the topics covered in this book. This volume may be of interest to all who work in the field of mechanism and machine science and we hope that it will contribute to the development of both mechanical engineering and applied mathematics

    14th Conference on Dynamical Systems Theory and Applications DSTA 2017 ABSTRACTS

    Get PDF
    From Preface: This is the fourteen time when the conference “Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 250 persons from 38 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 375 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference proceedings [...]

    Green Economy in the Transport Sector

    Get PDF
    This open access book is interdisciplinary and provides cross-sectoral and multi-dimensional exploration of sustainable development and transportation in South Africa. Drawing on work from different disciplines, the book contributes not only to academia but also seeks to inform urban and regional policy with the view of contributing to the national aspirations of South Africa as espoused in the National Development Plan (NDP), 2030, National Spatial Development Framework (NSDF) Draft (2019), National Climate Change Adaptation Strategy (NCASS) Draft (2019), Green Transport Strategy for South Africa (2018–2050), and National Transportation Plan (NATMAP), 2050. Adopting a multi-dimensional assessment, the book provides a background for co-production concerning climate change, sustainable development, and transportation in the Global South. The book contributes in its analysis of the institutional and legislative framework that relates to the climate change, skills and knowledge transfer, sustainable development, and transportation in South Africa, as these are responsible for the evolution of the green economy and transport sector in the country. The connections among different sectors and issues such as environment, transport modes, technology innovation, vehicle management and emission control, skills and knowledge transfer, legislative and policy framework, and the wider objectives of the sustainable development goals (SDGs), especially goals 11 to 13. The success stories relating to climate change, sustainable development, and transportation in South Africa are identified together with the best possible practices that may inform better environmental, urban and regional planning, policy, practice, and management

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Use, Operation and Maintenance of Renewable Energy Systems:Experiences and Future Approaches

    Get PDF
    The aim of this book is to put the reader in contact with real experiences, current and future trends in the context of the use, exploitation and maintenance of renewable energy systems around the world. Today the constant increase of production plants of renewable energy is guided by important social, economical, environmental and technical considerations. The substitution of traditional methods of energy production is a challenge in the current context. New strategies of exploitation, new uses of energy and new maintenance procedures are emerging naturally as isolated actions for solving the integration of these new aspects in the current systems of energy production. This book puts together different experiences in order to be a valuable instrument of reference to take into account when a system of renewable energy production is in operation

    Engineering and built environment project conference 2016: book of abstracts - Toowoomba, Australia, 19-23 September 2016

    Get PDF
    Book of Abstracts of the USQ Engineering and Built Environment Conference 2016, held Toowoomba, Australia, 19-23 September 2016. These proceedings include extended abstracts of the verbal presentations that are delivered at the project conference. The work reported at the conference is the research undertaken by students in meeting the requirements of courses ENG4111/ENG4112 Research Project for undergraduate or ENG8411/ENG8412 Research Project and Dissertation for postgraduate students

    Vehicle routing and scheduling – The traveling salesman problem

    Get PDF
    The classification of routing and scheduling problems depends on certain characteristics of the service delivery system, such as size of the delivery fleet, where the fleet is housed, capacities of the vehicles, and routing and scheduling objectives. In the simplest case, we begin with a set of nodes to be visited by a single vehicle. The nodes may be visited in any order, there are no precedence relationships, the travel costs between two nodes are the same regardless of the direction traveled, and there are no delivery-time restrictions. In addition, vehicle capacity is not considered. The output for the single-vehicle problem is a route or a tour where each node is visited only once and the route begins and ends at the depot node. The tour is formed with the goal of minimizing the total tour cost. This simplest case is referred to as a traveling salesman problem (TSP). An extension of the traveling salesman problem, referred to as the multiple traveling salesman problems (MTSP), occurs when a fleet of vehicles must be routed from a single depot. The goal is to generate a set of routes, one for each vehicle in the fleet. The characteristics of this problem are that a node may be assigned to only one vehicle, but a vehicle will have more than one node assigned to it. There are no restrictions on the size of the load or number of passengers a vehicle may carry. The solution to this problem will give the order in which each vehicle is to visit its assigned nodes. As in the single-vehicle case, the objective is to develop the set of minimum-cost routes, where “cost” may be represented by a dollar amount, distance, or travel time. If we now restrict the capacity of the multiple vehicles and couple with it the possibility of having varying demands at each node, the problem is classified as a vehicle routing problem (VRP). In this paper will be presenteds the TSP procedure for delivery and routing of new product L-carnitine from Koding – Skopje which life development is in the introduction or development phase
    corecore