1,299 research outputs found

    Fast Manipulability Maximization Using Continuous-Time Trajectory Optimization

    Full text link
    A significant challenge in manipulation motion planning is to ensure agility in the face of unpredictable changes during task execution. This requires the identification and possible modification of suitable joint-space trajectories, since the joint velocities required to achieve a specific endeffector motion vary with manipulator configuration. For a given manipulator configuration, the joint space-to-task space velocity mapping is characterized by a quantity known as the manipulability index. In contrast to previous control-based approaches, we examine the maximization of manipulability during planning as a way of achieving adaptable and safe joint space-to-task space motion mappings in various scenarios. By representing the manipulator trajectory as a continuous-time Gaussian process (GP), we are able to leverage recent advances in trajectory optimization to maximize the manipulability index during trajectory generation. Moreover, the sparsity of our chosen representation reduces the typically large computational cost associated with maximizing manipulability when additional constraints exist. Results from simulation studies and experiments with a real manipulator demonstrate increases in manipulability, while maintaining smooth trajectories with more dexterous (and therefore more agile) arm configurations.Comment: In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS'19), Macau, China, Nov. 4-8, 201

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Bimanual robotic manipulation based on potential fields

    Get PDF
    openDual manipulation is a natural skill for humans but not so easy to achieve for a robot. The presence of two end effectors implies the need to consider the temporal and spatial constraints they generate while moving together. Consequently, synchronization between the arms is required to perform coordinated actions (e.g., lifting a box) and to avoid self-collision between the manipulators. Moreover, the challenges increase in dynamic environments, where the arms must be able to respond quickly to changes in the position of obstacles or target objects. To meet these demands, approaches like optimization-based motion planners and imitation learning can be employed but they have limitations such as high computational costs, or the need to create a large dataset. Sampling-based motion planners can be a viable solution thanks to their speed and low computational costs but, in their basic implementation, the environment is assumed to be static. An alternative approach relies on improved Artificial Potential Fields (APF). They are intuitive, with low computational, and, most importantly, can be used in dynamic environments. However, they do not have the precision to perform manipulation actions, and dynamic goals are not considered. This thesis proposes a system for bimanual robotic manipulation based on a combination of improved Artificial Potential Fields (APF) and the sampling-based motion planner RRTConnect. The basic idea is to use improved APF to bring the end effectors near their target goal while reacting to changes in the surrounding environment. Only then RRTConnect is triggered to perform the manipulation task. In this way, it is possible to take advantage of the strengths of both methods. To improve this system APF have been extended to consider dynamic goals and a self-collision avoidance system has been developed. The conducted experiments demonstrate that the proposed system adeptly responds to changes in the position of obstacles and target objects. Moreover, the self-collision avoidance system enables faster dual manipulation routines compared to sequential arm movements

    Human-Robot Collaboration in Automotive Assembly

    Get PDF
    In the past decades, automation in the automobile production line has significantly increased the efficiency and quality of automotive manufacturing. However, in the automotive assembly stage, most tasks are still accomplished manually by human workers because of the complexity and flexibility of the tasks and the high dynamic unconstructed workspace. This dissertation is proposed to improve the level of automation in automotive assembly by human-robot collaboration (HRC). The challenges that eluded the automation in automotive assembly including lack of suitable collaborative robotic systems for the HRC, especially the compact-size high-payload mobile manipulators; teaching and learning frameworks to enable robots to learn the assembly tasks, and how to assist humans to accomplish assembly tasks from human demonstration; task-driving high-level robot motion planning framework to make the trained robot intelligently and adaptively assist human in automotive assembly tasks. The technical research toward this goal has resulted in several peer-reviewed publications. Achievements include: 1) A novel collaborative lift-assist robot for automotive assembly; 2) Approaches of vision-based robot learning of placing tasks from human demonstrations in assembly; 3) Robot learning of assembly tasks and assistance from human demonstrations using Convolutional Neural Network (CNN); 4) Robot learning of assembly tasks and assistance from human demonstrations using Task Constraint-Guided Inverse Reinforcement Learning (TC-IRL); 5) Robot learning of assembly tasks from non-expert demonstrations via Functional Objective-Oriented Network (FOON); 6) Multi-model sampling-based motion planning for trajectory optimization with execution consistency in manufacturing contexts. The research demonstrates the feasibility of a parallel mobile manipulator, which introduces novel conceptions to industrial mobile manipulators for smart manufacturing. By exploring the Robot Learning from Demonstration (RLfD) with both AI-based and model-based approaches, the research also improves robots’ learning capabilities on collaborative assembly tasks for both expert and non-expert users. The research on robot motion planning and control in the dissertation facilitates the safety and human trust in industrial robots in HRC

    λͺ¨μ…˜ ν”„λ¦¬λ¨Έν‹°λΈŒλ₯Ό μ΄μš©ν•œ λ³΅μž‘ν•œ λ‘œλ΄‡ μž„λ¬΄ ν•™μŠ΅ 및 μΌλ°˜ν™” 기법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ ν•­κ³΅μš°μ£Όκ³΅ν•™κ³Ό, 2020. 8. κΉ€ν˜„μ§„.Learning from demonstrations (LfD) is a promising approach that enables robots to perform a specific movement. As robotic manipulations are substituting a variety of tasks, LfD algorithms are widely used and studied for specifying the robot configurations for the various types of movements. This dissertation presents an approach based on parametric dynamic movement primitives (PDMP) as a motion representation algorithm which is one of relevant LfD techniques. Unlike existing motion representation algorithms, this work not only represents a prescribed motion but also computes the new behavior through a generalization of multiple demonstrations in the actual environment. The generalization process uses Gaussian process regression (GPR) by representing the nonlinear relationship between the PDMP parameters that determine motion and the corresponding environmental variables. The proposed algorithm shows that it serves as a powerful optimal and real-time motion planner among the existing planning algorithms when optimal demonstrations are provided as dataset. In this dissertation, the safety of motion is also considered. Here, safety refers to keeping the system away from certain configurations that are unsafe. The safety criterion of the PDMP internal parameters are computed to check the safety. This safety criterion reflects the new behavior computed through the generalization process, as well as the individual motion safety of the demonstration set. The demonstrations causing unsafe movement are identified and removed. Also, the demolished demonstrations are replaced by proven demonstrations upon this criterion. This work also presents an extension approach reducing the number of required demonstrations for the PDMP framework. This approach is effective where a single mission consists of multiple sub-tasks and requires numerous demonstrations in generalizing them. The whole trajectories in provided demonstrations are segmented into multiple sub-tasks representing unit motions. Then, multiple PDMPs are formed independently for correlated-segments. The phase-decision process determines which sub-task and associated PDMPs to be executed online, allowing multiple PDMPs to be autonomously configured within an integrated framework. GPR formulations are applied to obtain execution time and regional goal configuration for each sub-task. Finally, the proposed approach and its extension are validated with the actual experiments of mobile manipulators. The first two scenarios regarding cooperative aerial transportation demonstrate the excellence of the proposed technique in terms of quick computation, generation of efficient movement, and safety assurance. The last scenario deals with two mobile manipulations using ground vehicles and shows the effectiveness of the proposed extension in executing complex missions.μ‹œμ—° ν•™μŠ΅ 기법(Learning from demonstrations, LfD)은 λ‘œλ΄‡μ΄ νŠΉμ • λ™μž‘μ„ μˆ˜ν–‰ν•  수 μžˆλ„λ‘ ν•˜λŠ” μœ λ§ν•œ λ™μž‘ 생성 기법이닀. λ‘œλ΄‡ μ‘°μž‘κΈ°κ°€ 인간 μ‚¬νšŒμ—μ„œ λ‹€μ–‘ν•œ 업무λ₯Ό λŒ€μ²΄ν•΄ 감에 따라, λ‹€μ–‘ν•œ μž„λ¬΄λ₯Ό μˆ˜ν–‰ν•˜λŠ” λ‘œλ΄‡μ˜ λ™μž‘μ„ μƒμ„±ν•˜κΈ° μœ„ν•΄ LfD μ•Œκ³ λ¦¬μ¦˜λ“€μ€ 널리 μ—°κ΅¬λ˜κ³ , μ‚¬μš©λ˜κ³  μžˆλ‹€. λ³Έ 논문은 LfD 기법 쀑 λͺ¨μ…˜ ν”„λ¦¬λ¨Έν‹°λΈŒ 기반의 λ™μž‘ μž¬μƒμ„± μ•Œκ³ λ¦¬μ¦˜μΈ Parametric dynamic movement primitives(PDMP)에 κΈ°μ΄ˆν•œ μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ‹œν•˜λ©°, 이λ₯Ό 톡해 λ‹€μ–‘ν•œ μž„λ¬΄λ₯Ό μˆ˜ν–‰ν•˜λŠ” λͺ¨λ°”일 μ‘°μž‘κΈ°μ˜ ꢀ적을 μƒμ„±ν•œλ‹€. 기쑴의 λ™μž‘ μž¬μƒμ„± μ•Œκ³ λ¦¬μ¦˜κ³Ό 달리, 이 μ—°κ΅¬λŠ” 제곡된 μ‹œμ—°μ—μ„œ ν‘œν˜„λœ λ™μž‘μ„ λ‹¨μˆœνžˆ μž¬μƒμ„±ν•˜λŠ” 것에 κ·ΈμΉ˜μ§€ μ•Šκ³ , μƒˆλ‘œμš΄ ν™˜κ²½μ— 맞게 μΌλ°˜ν™” ν•˜λŠ” 과정을 ν¬ν•¨ν•œλ‹€. 이 λ…Όλ¬Έμ—μ„œ μ œμ‹œν•˜λŠ” μΌλ°˜ν™” 과정은 PDMPs의 λ‚΄λΆ€ νŒŒλΌλ―Έν„° 값인 μŠ€νƒ€μΌ νŒŒλΌλ―Έν„°μ™€ ν™˜κ²½ λ³€μˆ˜ μ‚¬μ΄μ˜ λΉ„μ„ ν˜• 관계λ₯Ό κ°€μš°μŠ€ νšŒκ·€ 기법 (Gaussian process regression, GPR)을 μ΄μš©ν•˜μ—¬ μˆ˜μ‹μ μœΌλ‘œ ν‘œν˜„ν•œλ‹€. μ œμ•ˆλœ 기법은 λ˜ν•œ 졜적 μ‹œμ—°λ₯Ό ν•™μŠ΅ν•˜λŠ” 방식을 톡해 κ°•λ ₯ν•œ 졜적 μ‹€μ‹œκ°„ 경둜 κ³„νš κΈ°λ²•μœΌλ‘œλ„ μ‘μš©λ  수 μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” λ˜ν•œ λ‘œλ΄‡μ˜ ꡬ동 μ•ˆμ „μ„±λ„ κ³ λ €ν•œλ‹€. κΈ°μ‘΄ μ—°κ΅¬λ“€μ—μ„œ 닀루어진 μ‹œμ—° 관리 기술이 λ‘œλ΄‡μ˜ ꡬ동 νš¨μœ¨μ„±μ„ κ°œμ„ ν•˜λŠ” λ°©ν–₯으둜 μ œμ‹œλœ 것과 달리, 이 μ—°κ΅¬λŠ” κ°•ν•œ κ΅¬μ†μ‘°κ±΄μœΌλ‘œ λ‘œλ΄‡μ˜ ꡬ동 μ•ˆμ „μ„±μ„ ν™•λ³΄ν•˜λŠ” μ‹œμ—° 관리 κΈ°μˆ μ„ 톡해 μ•ˆμ •μ„±μ„ κ³ λ €ν•˜λŠ” μƒˆλ‘œμš΄ 방식을 μ œμ‹œν•œλ‹€. μ œμ•ˆλœ 방식은 μŠ€νƒ€μΌ νŒŒλΌλ―Έν„° κ°’ μƒμ—μ„œ μ•ˆμ „μ„± 기쀀을 κ³„μ‚°ν•˜λ©°, 이 μ•ˆμ „ 기쀀을 톡해 μ‹œμ—°μ„ μ œκ±°ν•˜λŠ” 일련의 μž‘μ—…μ„ μˆ˜ν–‰ν•œλ‹€. λ˜ν•œ, 제거된 μ‹œμœ„λ₯Ό μ•ˆμ „ 기쀀에 따라 μž…μ¦λœ μ‹œμœ„λ‘œ λŒ€μ²΄ν•˜μ—¬ μΌλ°˜ν™” μ„±λŠ₯을 μ €ν•˜μ‹œν‚€μ§€ μ•Šλ„λ‘ μ‹œμœ„λ₯Ό κ΄€λ¦¬ν•œλ‹€. 이λ₯Ό 톡해 λ‹€μˆ˜μ˜ μ‹œμ—° 각각 κ°œλ³„ λ™μž‘ μ•ˆμ „μ„± 뿐 μ•„λ‹ˆλΌ 온라인 λ™μž‘μ˜ μ•ˆμ „μ„±κΉŒμ§€ κ³ λ €ν•  수 있으며, μ‹€μ‹œκ°„ λ‘œλ΄‡ μ‘°μž‘κΈ° μš΄μš©μ‹œ μ•ˆμ „μ„±μ΄ 확보될 수 μžˆλ‹€. μ œμ•ˆλœ μ•ˆμ •μ„±μ„ κ³ λ €ν•œ μ‹œμ—° 관리 κΈ°μˆ μ€ λ˜ν•œ ν™˜κ²½μ˜ 정적 섀정이 λ³€κ²½λ˜μ–΄ λͺ¨λ“  μ‹œμ—°μ„ ꡐ체해야 ν•  수 μžˆλŠ” μƒν™©μ—μ„œ μ‚¬μš©ν•  수 μžˆλŠ” μ‹œμ—°λ“€μ„ νŒλ³„ν•˜κ³ , 효율적으둜 μž¬μ‚¬μš©ν•˜λŠ” 데 μ‘μš©ν•  수 μžˆλ‹€. λ˜ν•œ λ³Έ 논문은 λ³΅μž‘ν•œ μž„λ¬΄μ—μ„œ 적용될 수 μžˆλŠ” PDMPs의 ν™•μž₯ 기법인 seg-PDMPsλ₯Ό μ œμ‹œν•œλ‹€. 이 접근방식은 λ³΅μž‘ν•œ μž„λ¬΄κ°€ 일반적으둜 볡수개의 κ°„λ‹¨ν•œ ν•˜μœ„ μž‘μ—…μœΌλ‘œ κ΅¬μ„±λœλ‹€κ³  κ°€μ •ν•œλ‹€. κΈ°μ‘΄ PDMPs와 달리 seg-PDMPsλŠ” 전체 ꢀ적을 ν•˜μœ„ μž‘μ—…μ„ λ‚˜νƒ€λ‚΄λŠ” μ—¬λŸ¬ 개의 λ‹¨μœ„ λ™μž‘μœΌλ‘œ λΆ„ν• ν•˜κ³ , 각 λ‹¨μœ„λ™μž‘μ— λŒ€ν•΄ μ—¬λŸ¬κ°œμ˜ PDMPsλ₯Ό κ΅¬μ„±ν•œλ‹€. 각 λ‹¨μœ„ λ™μž‘ λ³„λ‘œ μƒμ„±λœ PDMPsλŠ” ν†΅ν•©λœ ν”„λ ˆμž„μ›Œν¬λ‚΄μ—μ„œ 단계 κ²°μ • ν”„λ‘œμ„ΈμŠ€λ₯Ό 톡해 μžλ™μ μœΌλ‘œ ν˜ΈμΆœλœλ‹€. 각 단계 λ³„λ‘œ λ‹¨μœ„ λ™μž‘μ„ μˆ˜ν–‰ν•˜κΈ° μœ„ν•œ μ‹œκ°„ 및 ν•˜μœ„ λͺ©ν‘œμ μ€ κ°€μš°μŠ€ 곡정 νšŒκ·€(GPR)λ₯Ό μ΄μš©ν•œ ν™˜κ²½λ³€μˆ˜μ™€μ˜μ˜ 관계식을 톡해 μ–»λŠ”λ‹€. 결과적으둜, 이 μ—°κ΅¬λŠ” μ „μ²΄μ μœΌλ‘œ μš”κ΅¬λ˜λŠ” μ‹œμ—°μ˜ 수λ₯Ό 효과적으둜 쀄일 뿐 μ•„λ‹ˆλΌ, 각 λ‹¨μœ„λ™μž‘μ˜ ν‘œν˜„ μ„±λŠ₯을 κ°œμ„ ν•œλ‹€. μ œμ•ˆλœ μ•Œκ³ λ¦¬μ¦˜μ€ ν˜‘λ™ λͺ¨λ°”일 λ‘œλ΄‡ μ‘°μž‘κΈ° μ‹€ν—˜μ„ ν†΅ν•˜μ—¬ κ²€μ¦λœλ‹€. μ„Έ κ°€μ§€μ˜ μ‹œλ‚˜λ¦¬μ˜€κ°€ λ³Έ λ…Όλ¬Έμ—μ„œ 닀루어지며, 항곡 μš΄μ†‘κ³Ό κ΄€λ ¨λœ 첫 두 가지 μ‹œλ‚˜λ¦¬μ˜€λŠ” PDMPs 기법이 λ‘œλ΄‡ μ‘°μž‘κΈ°μ—μ„œ λΉ λ₯Έ 적응성, μž„λ¬΄ νš¨μœ¨μ„±κ³Ό μ•ˆμ „μ„± λͺ¨λ‘ λ§Œμ‘±ν•˜λŠ” 것을 μž…μ¦ν•œλ‹€. λ§ˆμ§€λ§‰ μ‹œλ‚˜λ¦¬μ˜€λŠ” 지상 μ°¨λŸ‰μ„ μ΄μš©ν•œ 두 개의 λ‘œλ΄‡ μ‘°μž‘κΈ°μ— λŒ€ν•œ μ‹€ν—˜μœΌλ‘œ λ³΅μž‘ν•œ μž„λ¬΄ μˆ˜ν–‰μ„ ν•˜κΈ° μœ„ν•΄ ν™•μž₯된 기법인 seg-PDMPsκ°€ 효과적으둜 λ³€ν™”ν•˜λŠ” ν™˜κ²½μ—μ„œ μΌλ°˜ν™”λœ λ™μž‘μ„ 생성함을 κ²€μ¦ν•œλ‹€.1 Introduction 1 1.1 Motivations 1 1.2 Literature Survey 3 1.2.1 Conventional Motion Planning in Mobile Manipulations 3 1.2.2 Motion Representation Algorithms 5 1.2.3 Safety-guaranteed Motion Representation Algorithms 7 1.3 Research Objectives and Contributions 7 1.3.1 Motion Generalization in Motion Representation Algorithm 9 1.3.2 Motion Generalization with Safety Guarantee 9 1.3.3 Motion Generalization for Complex Missions 10 1.4 Thesis Organization 11 2 Background 12 2.1 DMPs 12 2.2 Mobile Manipulation Systems 13 2.2.1 Single Mobile Manipulation 14 2.2.2 Cooperative Mobile Manipulations 14 2.3 Experimental Setup 17 2.3.1 Test-beds for Aerial Manipulators 17 2.3.2 Test-beds for Robot Manipulators with Ground Vehicles 17 3 Motion Generalization in Motion Representation Algorithm 22 3.1 Parametric Dynamic Movement Primitives 22 3.2 Generalization Process in PDMPs 26 3.2.1 Environmental Parameters 26 3.2.2 Mapping Function 26 3.3 Simulation Results 29 3.3.1 Two-dimensional Hurdling Motion 29 3.3.2 Cooperative Aerial Transportation 30 4 Motion Generalization with Safety Guarantee 36 4.1 Safety Criterion in Style Parameter 36 4.2 Demonstration Management 39 4.3 Simulation Validation 42 4.3.1 Two-dimensional Hurdling Motion 46 4.3.2 Cooperative Aerial Transportation 47 5 Motion Generalization for Complex Missions 51 5.1 Overall Structure of Seg-PDMPs 51 5.2 Motion Segments 53 5.3 Phase-decision Process 54 5.4 Seg-PDMPs for Single Phase 54 5.5 Simulation Results 55 5.5.1 Initial/terminal Offsets 56 5.5.2 Style Generalization 59 5.5.3 Recombination 61 6 Experimental Validation and Results 63 6.1 Cooperative Aerial Transportation 63 6.2 Cooperative Mobile Hang-dry Mission 70 6.2.1 Demonstrations 70 6.2.2 Simulation Validation 72 6.2.3 Experimental Results 78 7 Conclusions 82 Abstract (in Korean) 93Docto

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    Robots learn to behave: improving human-robot collaboration in flexible manufacturing applications

    Get PDF
    L'abstract Γ¨ presente nell'allegato / the abstract is in the attachmen
    • …
    corecore