437 research outputs found

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Aeronautical Engineering, a continuing bibliography with indexes

    Get PDF
    This bibliography lists 546 reports, articles and other documents introduced into the NASA scientific and technical information system in October 1984

    On the investigation of a novel x-ray imaging techniques in radiation oncology

    Get PDF
    Radiation therapy is indicated for nearly 50% of cancer patients in Australia. Radiation therapy requires accurate delivery of ionising radiation to the neoplastic tissue and pre-treatment in situ x-ray imaging plays an important role in meeting treatment accuracy requirements. Four dimensional cone-beam computed tomography (4D CBCT) is one such pre-treatment imaging technique that can help to visualise tumour target motion due to breathing at the time of radiation treatment delivery. Measuring and characterising the target motion can help to ensure highly accurate therapeutic x-ray beam delivery. In this thesis, a novel pre-treatment x-ray imaging technique, called Respiratory Triggered 4D cone-beam Computed Tomography (RT 4D CBCT), is conceived and investigated. Specifically, the aim of this work is to progress the 4D CBCT imaging technology by investigating the use of a patient’s breathing signal to improve and optimise the use of imaging radiation in 4D CBCT to facilitate the accurate delivery of radiation therapy. These investigations are presented in three main studies: 1. Introduction to the concept of respiratory triggered four dimensional conebeam computed tomography. 2. A simulation study exploring the behaviour of RT 4D CBCT using patientmeasured respiratory data. 3. The experimental realisation of RT 4D CBCT working in a real-time acquisitions setting. The major finding from this work is that RT 4D CBCT can provide target motion information with a 50% reduction in the x-ray imaging dose applied to the patient

    ВлияниС тСхничСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°Π½ΠΎΠ² стСрСотаксичСской Ρ€Π°Π΄ΠΈΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ (SRS) Π½Π° Π΄ΠΎΠ·ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈ Ρ€Π°Π΄ΠΈΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ

    Get PDF
    Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΌΡ‹ исслСдуСм влияниС тСхничСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°Π½ΠΎΠ² стСрСотаксичСской Ρ€Π°Π΄ΠΈΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ (SRS) Π½Π° Π΄ΠΎΠ·ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈ Ρ€Π°Π΄ΠΈΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ. ИсслСдованиС влияниС проводится ΠΏΡƒΡ‚Π΅ΠΌ измСнСния Ρ‚Π°ΠΊΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΊΠ°ΠΊ: ΡƒΠ³ΠΎΠ» ΠΊΠΎΠ»Π»ΠΈΠΌΠ°Ρ‚ΠΎΡ€Π°, ΡƒΠ³ΠΎΠ» Π³Π°Π½Ρ‚Ρ€ΠΈ, ΡƒΠ³ΠΎΠ» стола, ΡˆΠΈΡ€ΠΈΠ½Ρ‹ сСгмСнта, количСства Π°Ρ€ΠΎΠΊ ΠΈ ΠΏΠΎΠ»ΡƒΠ°Ρ€ΠΎΠΊ.In this Master’s thesis we are going to investigate influence of technical parameters of the SRS plans on the dosimetric and radiobiology evaluation. The investigation of this influence is carried by changing technical parameters, such as collimator angle, segment width, gantry angle, couch angle, quantity of arcs and semi-arcs. We investigate two patients who had brain tumors and were treated using SRS

    Logistical Optimization of Radiotherapy Treatments

    Get PDF

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Aeronautical engineering. A continuing bibliography with indexes, supplement 121, April 1980

    Get PDF
    This bibliography lists 411 reports, articles, and other documents introduced into the NASA Scientific and Technical Information system in March 1980

    Robust Thermal Error Modeling and Compensation for CNC Machine Tools.

    Full text link
    Thermal errors are one of the most significant factors affecting machine tool accuracy. Error compensation has been widely used to reduce the thermal errors, the robustness of the thermal error models, however, still needs to be improvement. Currently, five-axis machine tools are becoming more important and extensively utilized in industry. In this regard, the geometric errors of rotary axis must be properly measured and corrected to assure the accuracy of five-axis machining. Thermal error model, relating temperature variations to thermal errors, is the core of an effective thermal error compensation strategy. Thermal modal analysis, unveiling the essence of thermo-elastic process, is explored for the determination of temperature sensor placement based on the finite element analysis and eigen analysis. Thermal error models are thus derived based on the temperature variations collected from the specified temperature sensors. The robustness of the derived models is investigated in terms of linear extrapolation and frequency sensitivity. Numerical simulation and experiments are conducted to illustrate the existence of thermal modes and validate the robustness of the thermal error models. Thermal loop analysis is developed for the thermal error compensation of an entire machine tool. A machine tool is first decomposed into several thermal links along an identified thermal loop. For each thermal link, the thermal modal analysis is carried out for the derivation of thermal error model. These thermal links are finally reassembled for the thermal error prediction of the entire machine tool. The thermal loop analysis mitigates the inaccurate modeling of machine joints, and extensively facilitates the utilization of the finite element method in the thermal error modeling and compensation. Calibration of rotary axis of five-axis machine tools is usually time-consuming and laborious by using laser interferometer or autocollimator systems. The Telescopic Magnetic Ball Bar is explored to estimate error components induced by the rotational motion of a rotary axis. The calibration algorithm is developed based on the rigorous mathematical derivation. The setup errors, including parameter variation and eccentricity, have been accounted for through the numerical simulation, enabling the practical utilization of this method. This approach shows the advantages of easy setup and quick assessment.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60857/1/zhujie_1.pd

    An advanced prototyping process for highly accurate models in biomedical applications

    Get PDF
    An integrated prototyping process for the derivation of complex medical models is introduced. The use of medical models can support today’s medicine by improving diagnosis and surgical planning, teaching and patient information. To withstand the challenges of time and accuracy, a process for generating accurate virtual and physical medical models is needed. The introduced process offers the possibility to derive virtual and physical models for biomedical engineering applications. Reviewing the current situation of medical virtual prototyping and rapid prototyping applications, limitations were found related to the influential variables of data acquisition, data processing, virtual reality use, and rapid prototyping manufacturing. An integrated prototyping concept (MPP) is introduced for embedding virtual prototyping and rapid prototyping in biomedical applications. Data processing and 3D modeling of complex anatomical structures from computerized image data were investigated and discussed in detail. Finally, parameter analyses were evaluated to derive optimal parameters needed for preparing 3D models for virtual prototyping and rapid prototyping processing in medicine. Summarizing from the accuracy analysis, the present investigation is the first to examine tomographic scanning as decisive factor for inaccuracy of medical prototyping models. The human nose is an example of a complex anatomical geometry, which has been an object of scientific research interest for several years. One of the applications introduced here uses the developed MPP concept as basis for a procedure that generates animated medical models in a virtual reality environment. Although, attempts are being made to reconstruct the human nose as an experimental rapid prototyping model, a process for accurate reconstruction as a transparent rapid prototyping model is still missing. The MPP concept allows fabricating individual models of the human nose with a high level of accuracy and transparency. Finally, temporal analysis revealed major time improvements in modeling complex anatomical models compared to approaches without optimized process sequences and approved parameters. The prototyping of the human hip was the second example used. The results of this particular example emphasized the strengths of the medial prototyping process in preparing hip models for presurgery planning. Here, accuracy was enhanced considerably. Rapid prototyping hip models can provide assistance as a surgical planning tool in complex cases, especially in improving surgical results and implant stability. Thus, the accuracy and time of model generation is improved, thereby establishing a defined process for medical model generation. Considering the novel findings of broad improvements in accuracy and time, a new field of research is emerging, serving both virtual surgery applications and physical implant generation. The MPP developed in this work can be viewed as an initial approach for launching international standards of prototyping technologies in medicine
    • …
    corecore