6,526 research outputs found

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Application of Optimal Switching Using Adaptive Dynamic Programming in Power Electronics

    Get PDF
    In this dissertation, optimal switching in switched systems using adaptive dynamic programming (ADP) is presented. Two applications in power electronics, namely single-phase inverter control and permanent magnet synchronous motor (PMSM) control are studied using ADP. In both applications, the objective of the control problem is to design an optimal switching controller, which is also relatively robust to parameter uncertainties and disturbances in the system. An inverter is used to convert the direct current (DC) voltage to an alternating current (AC) voltage. The control scheme of the single-phase inverter uses a single function approximator, called critic, to evaluate the optimal cost and determine the optimal switching. After offline training of the critic, which is a function of system states and elapsed time, the resulting optimal weights are used in online control, to get a smooth output AC voltage in a feedback form. Simulations show the desirable performance of this controller with linear and nonlinear load and its relative robustness to parameter uncertainty and disturbances. Furthermore, the proposed controller is upgraded so that the inverter is suitable for single-phase variable frequency drives. Finally, as one of the few studies in the field of adaptive dynamic programming (ADP), the proposed controllers are implemented on a physical prototype to show the performance in practice. The torque control of PMSMs has become an interesting topic recently. A new approach based on ADP is proposed to control the torque, and consequently the speed of a PMSM when an unknown load torque is applied on it. The proposed controller achieves a fast transient response, low ripples and small steady-state error. The control algorithm uses two neural networks, called critic and actor. The former is utilized to evaluate the cost and the latter is used to generate control signals. The training is done once offline and the calculated optimal weights of actor network are used in online control to achieve fast and accurate torque control of PMSMs. This algorithm is compared with field-oriented control (FOC) and direct torque control based on space vector modulation (DTC-SVM). Simulations and experimental results show that the proposed algorithm provides desirable results under both accurate and uncertain modeled dynamics

    Approximate dynamic programming based solutions for fixed-final-time optimal control and optimal switching

    Get PDF
    Optimal solutions with neural networks (NN) based on an approximate dynamic programming (ADP) framework for new classes of engineering and non-engineering problems and associated difficulties and challenges are investigated in this dissertation. In the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time problems (also called terminal control problems) and problems with switching nature. An ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with soft terminal constraint, in which, a single neural network with a single set of weights is utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. The optimality analysis of the ADP based algorithm for fixed-final-time problems is the subject of Paper 3, in which, it is shown that the proposed algorithm leads to the global optimal solution providing certain conditions hold. Afterwards, the developments in Papers 1 to 3 are used to tackle a more challenging class of problems, namely, optimal control of switching systems. This class of problems is divided into problems with fixed mode sequence (Papers 4 and 5) and problems with free mode sequence (Papers 6 and 7). Each of these two classes is further divided into problems with autonomous subsystems (Papers 4 and 6) and problems with controlled subsystems (Papers 5 and 7). Different ADP-based algorithms are developed and proofs of convergence of the proposed iterative algorithms are presented. Moreover, an extension to the developments is provided for online learning of the optimal switching solution for problems with modeling uncertainty in Paper 8. Each of the theoretical developments is numerically analyzed using different real-world or benchmark problems --Abstract, page v

    On Distributed Implementation of Switch-Based Adaptive Dynamic Programming

    Get PDF
    Switch-based adaptive dynamic programming (ADP) is an optimal control problem in which a cost must be minimized by switching among a family of dynamical modes. When the system dimension increases, the solution to switch-based ADP is made prohibitive by the exponentially increasing structure of the value function approximator and by the exponentially increasing modes. This technical correspondence proposes a distributed computational method for solving switch-based ADP. The method relies on partitioning the system into agents, each one dealing with a lower dimensional state and a few local modes. Each agent aims to minimize a local version of the global cost while avoiding that its local switching strategy has conflicts with the switching strategies of the neighboring agents. A heuristic algorithm based on the consensus dynamics and Nash equilibrium is proposed to avoid such conflicts. The effectiveness of the proposed method is verified via traffic and building test cases

    Optimal Tracking Current Control of Switched Reluctance Motor Drives Using Reinforcement Q-learning Scheduling

    Get PDF
    In this paper, a novel Q-learning scheduling method for the current controller of switched reluctance motor (SRM) drive is investigated. Q-learning algorithm is a class of reinforcement learning approaches that can find the best forward-in-time solution of a linear control problem. This paper will introduce a new scheduled-Q-learning algorithm that utilizes a table of Q-cores that lies on the nonlinear surface of a SRM model without involving any information about the model parameters to track the reference current trajectory by scheduling infinite horizon linear quadratic trackers (LQT) handled by Q-learning algorithms. Additionally, a linear interpolation algorithm is proposed to guide the transition of the LQT between trained Q-cores to ensure a smooth response as state variables evolve on the nonlinear surface of the model. Lastly, simulation and experimental results are provided to validate the effectiveness of the proposed control scheme.Comment: 8 pages, 10 figure

    Optimal Control of Unknown Nonlinear System From Inputoutput Data

    Get PDF
    Optimal control designers usually require a plant model to design a controller. The problem is the controller\u27s performance heavily depends on the accuracy of the plant model. However, in many situations, it is very time-consuming to implement the system identification procedure and an accurate structure of a plant model is very difficult to obtain. On the other hand, neuro-fuzzy models with product inference engine, singleton fuzzifier, center average defuzzifier, and Gaussian membership functions can be easily trained by many well-established learning algorithms based on given input-output data pairs. Therefore, this kind of model is used in the current optimal controller design. Two approaches of designing optimal controllers of unknown nonlinear systems based on neuro-fuzzy models are presented in the thesis. The first approach first utilizes neuro-fuzzy models to approximate the unknown nonlinear systems, and then the feasible-direction algorithm is used to achieve the numerical solution of the Euler-Lagrange equations of the formulated optimal control problem. This algorithm uses the steepest descent to find the search direction and then apply a one-dimensional search routine to find the best step length. Finally several nonlinear optimal control problems are simulated and the results show that the performance of the proposed approach is quite similar to that of optimal control to the system represented by an explicit mathematical model. However, due to the limitation of the feasible-direction algorithm, this method cannot be applied to highly nonlinear and dimensional plants. Therefore, another approach that can overcome these drawbacks is proposed. This method utilizes Takagi-Sugeno (TS) fuzzy models to design the optimal controller. TS fuzzy models are first derived from the direct linearization of the neuro-fuzzy models, which is close to the local linearization of the nonlinear dynamic systems. The operating points are chosen so that the TS fuzzy model is a good approximation of the neuro-fuzzy model. Based on the TS fuzzy model, the optimal control is implemented for a nonlinear two-link flexible robot and a rigid asymmetric spacecraft, thus providing the possibility of implementing the well-established optimal control method on unknown nonlinear dynamic systems
    corecore