33,127 research outputs found

    Spectral Analysis for Signal Detection and Classification : Reducing Variance and Extracting Features

    Get PDF
    Spectral analysis encompasses several powerful signal processing methods. The papers in this thesis present methods for finding good spectral representations, and methods both for stationary and non-stationary signals are considered. Stationary methods can be used for real-time evaluation, analysing shorter segments of an incoming signal, while non-stationary methods can be used to analyse the instantaneous frequencies of fully recorded signals. All the presented methods aim to produce spectral representations that have high resolution and are easy to interpret. Such representations allow for detection of individual signal components in multi-component signals, as well as separation of close signal components. This makes feature extraction in the spectral representation possible, relevant features include the frequency or instantaneous frequency of components, the number of components in the signal, and the time duration of the components. Two methods that extract some of these features automatically for two types of signals are presented in this thesis. One adapted to signals with two longer duration frequency modulated components that detects the instantaneous frequencies and cross-terms in the Wigner-Ville distribution, the other for signals with an unknown number of short duration oscillations that detects the instantaneous frequencies in a reassigned spectrogram. This thesis also presents two multitaper methods that reduce the influence of noise on the spectral representations. One is designed for stationary signals and the other for non-stationary signals with multiple short duration oscillations. Applications for the methods presented in this thesis include several within medicine, e.g. diagnosis from analysis of heart rate variability, improved ultrasound resolution, and interpretation of brain activity from the electroencephalogram

    Radon spectrogram-based approach for automatic IFs separation

    Get PDF
    The separation of overlapping components is a well-known and difficult problem in multicomponent signals analysis and it is shared by applications dealing with radar, biosonar, seismic, and audio signals. In order to estimate the instantaneous frequencies of a multicomponent signal, it is necessary to disentangle signal modes in a proper domain. Unfortunately, if signal modes supports overlap both in time and frequency, separation is only possible through a parametric approach whenever the signal class is a priori fixed. In this work, time-frequency analysis and Radon transform are jointly used for the unsupervised separation of modes of a generic frequency modulated signal in noisy environment. The proposed method takes advantage of the ability of the Radon transform of a proper time-frequency distribution in separating overlapping modes. It consists of a blind segmentation of signal components in Radon domain by means of a near-to-optimal threshold operation. The inversion of the Radon transform on each detected region allows us to isolate the instantaneous frequency curves of each single mode in the time-frequency domain. Experimental results performed on constant amplitudes chirp signals confirm the effectiveness of the proposed method, opening the way for its extension to more complex frequency modulated signals

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore