7,585 research outputs found

    Estimation of component redundancy in optimal age maintenance

    Get PDF
    The classical Optimal Age-Replacement defines the maintenance strategy based on the equipment failure consequences. For severe consequences an early equipment replacement is recommended. For minor consequences the repair after failure is proposed. One way of reducing the failure consequences is the use of redundancies, especially if the equipment failure rate is decreasing over time, since in this case the preventive replacement does not reduce the risk of failure. The estimation of an active component redundancy degree is very important in order to minimize the life-cycle cost. If it is possible to make these estimations in the early phase of system design, the implementation is easier and the amortization faster. This work proposes an adaptation of the Optimal Age-Replacement method in order to simultaneously optimize the equipment redundancy allocation and the maintenance plan. The main goal is to provide a simple methodology, requiring the fewer data possible. A set of examples are presented illustrating that this methodology covers a wide variety of operating conditions. The optimization of the number of repairs between each replacement, in the cases of imperfect repairs, is another feature of this methodology

    Operational strategies for offshore wind turbines to mitigate failure rate uncertainty on operational costs and revenue

    Get PDF
    Several operational strategies for offshore wind farms have been established and explored in order to improve understanding of operational costs with a focus on heavy lift vessel strategies. Additionally, an investigation into the uncertainty surrounding failure behaviour has been performed identifying the robustness of different strategies. Four operational strategies were considered: fix on fail, batch repair, annual charter and purchase. A range of failure rates have been explored identifying the key cost drivers and under which circumstances an operator would choose to adopt them. When failures are low, the fix on fail and batch strategies perform best and allow flexibility of operating strategy. When failures are high, purchase becomes optimal and is least sensitive to increasing failure rate. Late life failure distributions based on mechanical and electrical components behaviour have been explored. Increased operating costs because of wear-out failures have been quantified. An increase in minor failures principally increase lost revenue costs and can be mitigated by deploying increased maintenance resources. An increase in larger failures primarily increases vessel and repair costs. Adopting a purchase strategy can negate the vessel cost increase; however, significant cost increases are still observed. Maintenance actions requiring the use of heavy lift vessels, currently drive train components and blades are identified as critical for proactive maintenance to minimise overall maintenance costs
    • …
    corecore