5,786 research outputs found

    Efficient carbon utilization to dimethyl ether by steam adsorption enhancement

    Get PDF

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° Π·Π° синтСзу Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° заснована Π½Π° ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΠΈΠΌΠ° ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅ процСса ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅

    Get PDF
    In this Ph.D. thesis, a new methodology for Reactor Synthesis Based on Process Intensification Concepts and Application of Optimization Methods (ReSyPIO) is presented and applied to two different cases. In Chapter 1: Introduction – Motivation and Objectives, the motive for the research is presented, and Hypotheses are formulated. The ReSyPIO methodology that rests upon these Hypotheses and consists of three consecutive stages is briefly described in this Chapter. The first stage encapsulates all present phases and phenomena inside the reactor functional building block, called module. Modules come as a direct result of a conceptual representation of the analyzed system. In the second stage, modules are further segmented if needed and interconnected, creating a reactor superstructure that is mathematically described for all desirable operating regimes. In the last stage of the ReSyPIO methodology, the optimal structure, operating conditions, and the operational regime are determined with the use of rigorous optimization. All three stages of the ReSyPIO methodology have a backflow, meaning that if analysis leads to impractical, nonfunctional or inefficient results, modifications in reactor superstructure and modules can be made. The objective is to conceptually and numerically derive the most efficient reactor structure and a set of operating conditions that would be used as a starting point in the future reactor design. Chapter 2: Literature Review is used to cover and review the most important research published in the area of Process Intensification and different Process System Engineering techniques. Different approaches and studies present in academia are highlighted and their elements compared with the presented ReSyPIO methodology with the accent on its advantages and contribution to the engineering science community.Also, in this Chapter, an array of well researched analytical and numerical approaches is presented that could be used in the future to strengthen the ReSyPIO methodology further and facilitate its easier application. In Chapter 3: Description of the ReSyPIO Methodology Reactor Synthesis based on Process Intensification and Optimization of Superstructure is explained in detail, with a graphical representation of the main building block, called Phenomenological Module. A general explanation is given on how to form a reactor superstructure and mathematically describe it with sets of material and energy balance equations that correspond to a number of present phases and components in the system. The ReSyPIO methodology is first applied to a generic case of two parallel reactions in Chapter 4, called Application of the ReSyPIO Methodology on a Generic Reaction Case. The case corresponds to two parallel reactions that could be found in the fine chemical industry. The reactions are endothermic and slow with the undesired product. After the application of the ReSyPIO methodology, an optimal reactor structure consisting of a segmented module with 17 side inlets for the reactant and heat source is obtained. It is recommended for the reactor to work in a continuous steady-state mode as the dynamic operation would not lead to a sufficient increase in reactor efficiency...Π£ овој Π΄ΠΎΠΊΡ‚ΠΎΡ€ΡΠΊΠΎΡ˜ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ јС прСдстављСна ΠΈ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° Π½ΠΎΠ²Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° Π·Π° синтСзу Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° заснована Π½Π° ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΠΈΠΌΠ° ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅ процСса ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΎΠ½ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° (Reactor Synthesis Based on Process Intensification Concepts and Application of Optimization Methods – ReSyPIO). Π£ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ Π£Π²ΠΎΠ΄ – ΠœΠΎΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ˜Π° ΠΈ Ρ†ΠΈΡ™Π΅Π²ΠΈ, Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Π½Π΅ су Ρ…ΠΈΠΏΠΎΡ‚Π΅Π·Π΅ Π½Π° којима ΠΏΠΎΡ‡ΠΈΠ²Π° ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° ΠΈ Π΄Π°Ρ‚Π° јС ΠΌΠΎΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ˜Π° Π·Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅. ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° јС ΡƒΠΊΡ€Π°Ρ‚ΠΊΠΎ прСдстављСна ΠΈ описана ΠΊΡ€ΠΎΠ· Ρ‚Ρ€ΠΈ узастопнС Π΅Ρ‚Π°ΠΏΠ΅. ΠŸΡ€Π²Π° Π΅Ρ‚Π°ΠΏΠ° ΡƒΠΎΠΊΠ²ΠΈΡ€Π°Π²Π° свС присутнС Ρ„Π°Π·Π΅ ΠΈ Ρ„Π΅Π½ΠΎΠΌΠ΅Π½Π΅ Ρƒ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Ρƒ ΡƒΠ½ΡƒΡ‚Π°Ρ€ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΡ… Π³Ρ€Π°Π΄ΠΈΠ²Π½ΠΈΡ… Ρ˜Π΅Π΄ΠΈΠ½ΠΈΡ†Π°, Π½Π°Π·Π²Π°Π½ΠΈΡ… ΠΌΠΎΠ΄ΡƒΠ»ΠΈ. ΠœΠΎΠ΄ΡƒΠ»ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Ρ™Π°Ρ˜Ρƒ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΡƒΠ°Π»Π½ΠΎΠ³ ΠΏΡ€ΠΈΠΊΠ°Π·Π° Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½ΠΎΠ³ систСма. Π£ Π΄Ρ€ΡƒΠ³ΠΎΡ˜ Π΅Ρ‚Π°ΠΏΠΈ, ΠΌΠΎΠ΄ΡƒΠ»ΠΈ сС ΠΏΠΎ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈ ΠΌΠΎΠ³Ρƒ Π΄Π°Ρ™Π΅ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΠΈ Ρƒ сСгмСнтС ΠΈ мСђусобно ΠΏΠΎΠ²Π΅Π·Π°Ρ‚ΠΈ, ΠΊΡ€Π΅ΠΈΡ€Π°Ρ˜ΡƒΡ›ΠΈ супСрструктуру Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°. БупСрструктура јС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ описана Π·Π° свС Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π°Π΄Π° Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° ΠΎΠ΄ интСрСса. Π£ послСдњој Π΅Ρ‚Π°ΠΏΠΈ ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅, ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π° структура, услови ΠΈ Ρ€Π΅ΠΆΠΈΠΌ Ρ€Π°Π΄Π° Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° су ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ Ρ€ΠΈΠ³ΠΎΡ€ΠΎΠ·Π½Π΅ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅. Π‘Π²Π΅ Ρ‚Ρ€ΠΈ Π΅Ρ‚Π°ΠΏΠ΅ ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ ΠΈΠΌΠ°Ρ˜Ρƒ ΠΏΠΎΠ²Ρ€Π°Ρ‚Π½ΠΈ Ρ‚ΠΎΠΊ, ΡˆΡ‚ΠΎ Π·Π½Π°Ρ‡ΠΈ Π΄Π° ΡƒΠΊΠΎΠ»ΠΈΠΊΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π²ΠΎΠ΄ΠΈ ΠΊΠ° Π½Π΅ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΈΠΌ, Π½Π΅Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΌ ΠΈΠ»ΠΈ нССфикасним Ρ€Π΅ΡˆΠ΅ΡšΠΈΠΌΠ°, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°, супСрструктурС ΠΈ/ΠΈΠ»ΠΈ ΠΌΠΎΠ΄ΡƒΠ»Π° јС ΠΌΠΎΠ³ΡƒΡ›Π°. Π¦ΠΈΡ™ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ јС Π΄Π° сС ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΡƒΠ°Π»Π½ΠΈΠΌ ΠΈ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΠΌ приступом Π΄ΠΎΡ’Π΅ Π΄ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π΅ ΠΏΡ€Π΅ΠΏΠΎΡ€ΡƒΠΊΠ΅ Π·Π° структуру Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°, ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Π΅ условС ΠΈ Ρ€Π΅ΠΆΠΈΠΌ Ρ€Π°Π΄Π°, која Π±ΠΈ Π±ΠΈΠ»Π° ΠΏΠΎΡ‡Π΅Ρ‚Π½Π° прСтпоставка Ρƒ Π±ΡƒΠ΄ΡƒΡ›Π΅ΠΌ Π΄ΠΈΠ·Π°Ρ˜Π½Ρƒ ΡƒΡ€Π΅Ρ’Π°Ρ˜Π°. ΠŸΡ€Π΅Π³Π»Π΅Π΄ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ дајС опис ΠΈ ΠΏΡ€ΠΈΠΊΠ°Π· свих ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΎΠ΄ интСрСса, ΠΈΠ· области Π˜Π½Ρ‚Π΅Π½Π·ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅ процСса ΠΈ Π’Π΅ΠΎΡ€ΠΈΡ˜Π΅ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ процСсних систСма. НаглашСни су Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈ приступи ΠΈ ΡΡ‚ΡƒΠ΄ΠΈΡ˜Π΅ присутнС Ρƒ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°Ρ‡ΠΊΠΎΡ˜Π·Π°Ρ˜Π΅Π΄Π½ΠΈΡ†ΠΈ, Π° ΡšΠΈΡ…ΠΎΠ²ΠΈ Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈ ΡƒΠΏΠΎΡ€Π΅Ρ’Π΅Π½ΠΈ са прСдстављСном ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜ΠΎΠΌ са Π°ΠΊΡ†Π΅Π½Ρ‚ΠΎΠΌ Π½Π° прСдностима ΠΈ Π½Π°ΡƒΡ‡Π½ΠΎΠΌ доприносу. Π£ ΠΎΠ²ΠΎΠΌ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ јС Π΄Π°Ρ‚ ΠΈ Π½ΠΈΠ· Π΄ΠΎΠ±Ρ€ΠΎ истраТСних Π°Π½Π°Π»ΠΈΡ‚ΠΈΡ‡ΠΊΠΈΡ… ΠΈ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΡ… приступа који Π±ΠΈ ΠΌΠΎΠ³Π»ΠΈ Π΄Π° Π±ΡƒΠ΄Ρƒ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ΠΈ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ ΠΈ ΠΎΠ»Π°ΠΊΡˆΠ°Ρ˜Ρƒ ΡšΠ΅Π½Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ. Π£ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ Опис ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅, јС Π΄Π΅Ρ‚Π°Ρ™Π½ΠΎ објашњСна синтСза Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° заснована Π½Π° ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΠΈΠΌΠ° ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅ процСса ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜ΠΈ супСрструктурС. ΠŸΡ€Π²ΠΎ јС Π΄Π°Ρ‚Π° ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° Π·Π° Π³Ρ€Π°Ρ„ΠΈΡ‡ΠΊΡƒ ΠΈ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΡƒΠ°Π»Π½Ρƒ Ρ€Π΅ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Ρƒ систСма, ΠΏΡ€Π΅ΠΊΠΎ Π³Π»Π°Π²Π½ΠΈΡ… Π³Ρ€Π°Π΄ΠΈΠ²Π½ΠΈΡ… Ρ˜Π΅Π΄ΠΈΠ½ΠΈΡ†Π°, Ρ„Π΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ»ΠΎΡˆΠΊΠΈΡ… ΠΌΠΎΠ΄ΡƒΠ»Π°. ΠŸΠΎΡ‚ΠΎΠΌ јС објашњСно ΠΊΠ°ΠΊΠΎ сС ΠΊΡ€Π΅ΠΈΡ€Π° супСрструктура Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°. На ΠΊΡ€Π°Ρ˜Ρƒ јС Π΄Π°Ρ‚ ΡƒΠΎΠΏΡˆΡ‚Π΅Π½ поступак Π·Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ опис супСрструктурС ΠΏΡ€Π΅ΠΊΠΎ скупова Ρ˜Π΅Π΄Π½Π°Ρ‡ΠΈΠ½Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π½ΠΎΠ³ ΠΈ СнСргСтског биланса, Ρ‡ΠΈΡ˜ΠΈ Π±Ρ€ΠΎΡ˜ зависи ΠΎΠ΄ Π±Ρ€ΠΎΡ˜Π° присутних Ρ„Π°Π·Π° ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Π°Ρ‚Π° Ρƒ систСму. ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° јС ΠΏΡ€Π²ΠΈ ΠΏΡƒΡ‚ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° Π½Π° ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Π΄Π²Π΅ Π³Π΅Π½Π΅Ρ€ΠΈΡ‡ΠΊΠ΅ ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π΅ Ρƒ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ ΠΏΠΎΠ΄ Π½Π°Π·ΠΈΠ²ΠΎΠΌ ΠŸΡ€ΠΈΠΌΠ΅Π½Π° ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ Π½Π° ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Π³Π΅Π½Π΅Ρ€ΠΈΡ‡ΠΊΠ΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π΅. Овај ΡΠ»ΡƒΡ‡Π°Ρ˜ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π°ΠΌΠ° којС сС ΠΌΠΎΠ³Ρƒ Π½Π°Ρ›ΠΈ Ρƒ ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜ΠΈ Ρ„ΠΈΠ½ΠΈΡ… Ρ…Π΅ΠΌΠΈΠΊΠ°Π»ΠΈΡ˜Π°. Π Π΅Π°ΠΊΡ†ΠΈΡ˜Π΅ су Π΅Π½Π΄ΠΎΡ‚Π΅Ρ€ΠΌΠ½Π΅ ΠΈ спорС, ΠΏΡ€ΠΈ Ρ‡Π΅ΠΌΡƒ јС ΠΊΠΈΠ½Π΅Ρ‚ΠΈΡ‡ΠΊΠΈ Ρ„Π°Π²ΠΎΡ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ ΠΊΡ€Π΅ΠΈΡ€Π°ΡšΠ΅ Π½Π΅ΠΆΠ΅Ρ™Π΅Π½ΠΎΠ³ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π°. Након ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ ReSyPIO ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅, добијСна јС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π° структура Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° која сС ΡΠ°ΡΡ‚ΠΎΡ˜ΠΈ ΠΎΠ΄ сСгмСнтисаног ΠΌΠΎΠ΄ΡƒΠ»Π° са 17 ΡƒΠ»Π°Π·Π° Π·Π° ΠΈΠ·Π²ΠΎΡ€ Ρ‚ΠΎΠΏΠ»ΠΎΡ‚Π΅ ΠΈ Ρ€Π΅Π°ΠΊΡ‚Π°Π½Ρ‚ који сС Π΄ΠΎΠ·ΠΈΡ€Π°. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ јС Π΄Π° Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€ Ρ€Π°Π΄ΠΈ ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠ°Π»Π½ΠΎ, Ρƒ стационарном Ρ€Π΅ΠΆΠΈΠΌΡƒ Ρ€Π°Π΄Π°, Ρ˜Π΅Ρ€ Π±ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ Ρ€Π΅ΠΆΠΈΠΌ Ρ€Π°Π΄Π° Ρ€Π΅Π·ΡƒΠ»Ρ‚ΠΎΠ²Π°ΠΎ Π½Π΅Π΄ΠΎΠ²ΠΎΡ™Π½ΠΈΠΌ ΠΏΠΎΠ²Π΅Ρ›Π°ΡšΠ΅ΠΌ Сфикасности Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°..

    Metal-Organic Frameworks in Germany: from Synthesis to Function

    Full text link
    Metal-organic frameworks (MOFs) are constructed from a combination of inorganic and organic units to produce materials which display high porosity, among other unique and exciting properties. MOFs have shown promise in many wide-ranging applications, such as catalysis and gas separations. In this review, we highlight MOF research conducted by Germany-based research groups. Specifically, we feature approaches for the synthesis of new MOFs, high-throughput MOF production, advanced characterization methods and examples of advanced functions and properties

    110th Anniversary : carbon dioxide and chemical looping : current research trends

    Get PDF
    Driven by the need to develop technologies for converting CO2, an extraordinary array of chemical looping based process concepts has been proposed and researched over the past 15 years. This review aims at providing first a historical context of the molecule CO2, which sits at the center of these developments. Then, different types of chemical looping related to CO2 are addressed, with attention to process concepts, looping materials, and reactor configurations. Herein, focus lies on the direct conversion of carbon dioxide into carbon monoxide, a process deemed to have economic potential

    A Novel Method for Pre-combustion CO2 Capture in Fluidized Bed

    Get PDF
    La comunidad internacional estΓ‘ realizando enormes esfuerzos para mitigar los efectos de las emisiones de gases de efecto invernadero (GEI) en el cambio climΓ‘tico. Aproximadamente le 25% de las emisiones globales de GEI (fundamentalmente CO2) son generados por la combustiΓ³n de combustibles fΓ³siles en el sector elΓ©ctrico. La captura y almacenamiento de CO2 se ha propuesto como una alternativa para reducir las emisiones de GEI en centrales tΓ©rmicas. Numerosas tecnologΓ­as para la captura de CO2 se han desarrollado en los ΓΊltimos aΓ±os, fundamentalmente en tres lΓ­neas tecnolΓ³gicas: postcombustiΓ³n, oxicombustiΓ³n y precombustiΓ³n. Esta tesis presenta un nuevo mΓ©todo para la captura de CO2 en precombustiΓ³n, produciendo hidrΓ³geno a partir de carbΓ³n, sin emisiones de GEI. El objetivo principal de este trabajo ha sido desarrollar un modelo completo, mediante herramientas de fluido dinΓ‘mica computacional (CFD), del proceso de reformado de un gas de sΓ­ntesis con alto contenido en metano combinado con la captura de CO2 mediante adsorciΓ³n con sorbentes sΓ³lidos regenerables. Este proceso es conocido como reformado de metano mejorado por adsorciΓ³n (o SE-SMR, su acrΓ³nimo en inglΓ©s). SE-SMR representa una novedosa y eficiente energΓ©ticamente ruta para la producciΓ³n de hidrΓ³geno con captura in situ de CO2. Este proceso ha sido estudiado en un lecho fluido burbujeante, usando sorbentes sΓ³lidos de Γ³xido de calcio como captores de CO2. Dos sorbentes sΓ³lidos han sido estudiados en laboratorio: uno natural (Dolomita) y uno sintΓ©tico (CaO- Ca12Al14O33). AdemΓ‘s, varios tratamientos han sido desarrollados para mejorar la capacidad de captura de estos sorbentes. Un completo modelo CFD del proceso de SE-SMR ha sido desarrollado. Una aproximaciΓ³n Euleriana-Euleriana ha sido combinada con la TeorΓ­a CinΓ©tica de Flujos Granulares para simular la fluidodinΓ‘mica del lecho fluido burbujeante. Los reacciones quΓ­micas de reformado y carbonataciΓ³n han sido implementadas en el modelo CFD. Se ha incluido un modelo detallado de captura de CO2 para simular el comportamiento de los diferentes sorbentes sometidos a diferentes pretratamientos para mejorar su rendimiento. Asimismo, un modelo de arrastre de partΓ­culas ha sido desarrollado para reducir el coste computacional de las simulaciones a escala semi-industrial. Se ha llevado a cabo una extensa campaΓ±a de simulaciones para validar el modelo a escala de laboratorio y semi-industrial. Las simulaciones CFD han sido combinadas con un DiseΓ±o de Experimentos Robusto, con el objetivo predecir y evaluar la sensibilidad del proceso SE-SMR a diversos factores operativos

    Preparation and Performance of Novel CaO-Based Sorbents for High-Temperature CO2 Removal

    Get PDF
    Sorption-Enhanced Steam Reforming process (SESR) is an auspicious technology for hydrogen (H2) production with simultaneous capture of carbon dioxide (CO2) derived from design modifications performed on the conventional Steam Reforming Process (SRP). Enhancing the reforming reaction in terms of kinetics, yield and purity through capturing in situ CO2 using high temperature solid sorbents brings advantages including reduction in energy requirements and lower investment capital. Even though SESR is a cost-effective route for energy generation based on organic volatile and gaseous feedstock including natural gas, its implementation implies overcoming challenges. Diminishing the sintering in CaO-based CO2 sorbents has become one of these challenges since the reactivity of these captors decreases significantly as the number of carbonation/calcination cycles proceeds. This research work centres its efforts in the development of novel sintering resistant CaO-based CO2 sorbents enhanced by means of the incorporation of a refractory, high surface area, polycrystalline fibrous support (Saffil), with high-Al2O3 content, acting as structural stabilizer of CaO. Four families of CaO-based CO2 sorbents were prepared using wet impregnation and precipitation methods. Different variants such as CaO precursor, precipitant agents, pH, stirring, aging time, etc. were tested to optimize the synthesis parameters. The best preparation conditions were aimed at achieving a homogeneous deposition of CaO over the Saffil support as well as a morphology in CaO that might improve the durability of CO2 acceptors. In particular, the formation of nanoflakes, and particles with an octahedral shape were found to be two of the most promising morphologies. Upon the determination of optimal synthesis parameters, the as-prepared CO2 sorbents were characterized in order to determine their physicochemical properties such as textural features (surface area and pore size distribution – N2 physisorption), real CaO content (XRF), dispersion of CaO over Saffil supports (SEM-EDX), phase identification (XRD), etc. Carrying capacities and durability of CaO-based CO2 sorbents were assessed through multicycle carbonation/decarbonation tests under controlled conditions such as temperature and atmosphere. The dynamic/isothermal experiments conducted in a TGA system confirm an enhancement in reactivity when CaO grows over the periphery of the Saffil support. In addition to the use of a support, achieving a β€˜clamping effect’ (to diminish lateral mobility of CaO, thus avoiding particle densification), in conjunction with the morphology adopted by CaO, is shown to provide thermal stability. SEM-EDX techniques applied on used CaO-based sorbents (30 carbonation-calcination cycles) corroborate that the enhancement in durability is due to the outstanding sintering resistance exhibited when CaO adopted the nanoflake or octahedral structure. The viability of the as-prepared sorbents was also confirmed through a kinetic study in which kinetic parameters and mechanisms associated with both carbonation and calcination reactions were estimated. Concerning the CO2 uptake kinetics, the isothermal method was used to collect mass change data whilst model-based equations were employed to elucidate the kinetic triplet. For the calcination reaction, the kinetic study was performed using both isothermal and non-isothermal methods. Activation energies assessed for the carbonation and calcination reactions were compared among them and also in relation with other CaO-based sorbents available in the literature for reliability purposes

    Enhanced hydrogen production from thermochemical processes

    Get PDF
    To alleviate the pressing problem of greenhouse gas emissions, the development and deployment of sustainable energy technologies is necessary. One potentially viable approach for replacing fossil fuels is the development of a H2 economy. Not only can H2 be used to produce heat and electricity, it is also utilised in ammonia synthesis and hydrocracking. H2 is traditionally generated from thermochemical processes such as steam reforming of hydrocarbons and the water-gas-shift (WGS) reaction. However, these processes suffer from low H2 yields owing to their reversible nature. Removing H2 with membranes and/or extracting CO2 with solid sorbents in situ can overcome these issues by shifting the component equilibrium towards enhanced H2 production via Le Chatelier's principle. This can potentially result in reduced energy consumption, smaller reactor sizes and, therefore, lower capital costs. In light of this, a significant amount of work has been conducted over the past few decades to refine these processes through the development of novel materials and complex models. Here, we critically review the most recent developments in these studies, identify possible research gaps, and offer recommendations for future research

    Sorption direct air capture with CO2 utilization

    Get PDF
    Direct air capture (DAC) is gathering momentum since it has vast potential and high flexibility to collect CO2 from discrete sources as β€œsynthetic tree” when compared with current CO2 capture technologies, e.g., amine based post-combustion capture. It is considered as one of the emerging carbon capture technologies in recent decades and remains in a prototype investigation stage with many technical challenges to be overcome. The objective of this paper is to comprehensively discuss the state-of-the-art of DAC and CO2 utilization, note unresolved technology bottlenecks, and give investigation perspectives for commercial large-scale applications. Firstly, characteristics of physical and chemical sorbents are evaluated. Then, the representative capture processes, e.g., pressure swing adsorption, temperature swing adsorption and other ongoing absorption chemical loops, are described and compared. Methods of CO2 conversion including synthesis of fuels and chemicals as well as biological utilization are reviewed. Finally, techno-economic analysis and life cycle assessment for DAC application are summarized. Based on research achievements, future challenges of DAC and CO2 conversion are presented, which include providing synthesis guidelines for obtaining sorbents with the desired characteristics, uncovering the mechanisms for different working processes and establishing evaluation criteria in terms of technical and economic aspects
    • …
    corecore