42,133 research outputs found

    Update-Efficiency and Local Repairability Limits for Capacity Approaching Codes

    Get PDF
    Motivated by distributed storage applications, we investigate the degree to which capacity achieving encodings can be efficiently updated when a single information bit changes, and the degree to which such encodings can be efficiently (i.e., locally) repaired when single encoded bit is lost. Specifically, we first develop conditions under which optimum error-correction and update-efficiency are possible, and establish that the number of encoded bits that must change in response to a change in a single information bit must scale logarithmically in the block-length of the code if we are to achieve any nontrivial rate with vanishing probability of error over the binary erasure or binary symmetric channels. Moreover, we show there exist capacity-achieving codes with this scaling. With respect to local repairability, we develop tight upper and lower bounds on the number of remaining encoded bits that are needed to recover a single lost bit of the encoding. In particular, we show that if the code-rate is ϵ\epsilon less than the capacity, then for optimal codes, the maximum number of codeword symbols required to recover one lost symbol must scale as log1/ϵ\log1/\epsilon. Several variations on---and extensions of---these results are also developed.Comment: Accepted to appear in JSA

    SER Performance of Enhanced Spatial Multiplexing Codes with ZF/MRC Receiver in Time-Varying Rayleigh Fading Channels

    Get PDF
    We propose enhanced spatial multiplexing codes (E-SMCs) to enable various encoding rates. The symbol error rate (SER) performance of the E-SMC is investigated when zero-forcing (ZF) and maximal-ratio combining (MRC) techniques are used at a receiver. The proposed E-SMC allows a transmitted symbol to be repeated over time to achieve further diversity gain at the cost of the encoding rate. With the spatial correlation between transmit antennas, SER equations for M-ary QAM and PSK constellations are derived by using a moment generating function (MGF) approximation of a signal-to-noise ratio (SNR), based on the assumption of independent zero-forced SNRs. Analytic and simulated results are compared for time-varying and spatially correlated Rayleigh fading channels that are modelled as first-order Markovian channels. Furthermore, we can find an optimal block length for the E-SMC that meets a required SER

    Adaptive Protocols for Interactive Communication

    Full text link
    How much adversarial noise can protocols for interactive communication tolerate? This question was examined by Braverman and Rao (IEEE Trans. Inf. Theory, 2014) for the case of "robust" protocols, where each party sends messages only in fixed and predetermined rounds. We consider a new class of non-robust protocols for Interactive Communication, which we call adaptive protocols. Such protocols adapt structurally to the noise induced by the channel in the sense that both the order of speaking, and the length of the protocol may vary depending on observed noise. We define models that capture adaptive protocols and study upper and lower bounds on the permissible noise rate in these models. When the length of the protocol may adaptively change according to the noise, we demonstrate a protocol that tolerates noise rates up to 1/31/3. When the order of speaking may adaptively change as well, we demonstrate a protocol that tolerates noise rates up to 2/32/3. Hence, adaptivity circumvents an impossibility result of 1/41/4 on the fraction of tolerable noise (Braverman and Rao, 2014).Comment: Content is similar to previous version yet with an improved presentatio

    Lossless and near-lossless source coding for multiple access networks

    Get PDF
    A multiple access source code (MASC) is a source code designed for the following network configuration: a pair of correlated information sequences {X-i}(i=1)(infinity), and {Y-i}(i=1)(infinity) is drawn independent and identically distributed (i.i.d.) according to joint probability mass function (p.m.f.) p(x, y); the encoder for each source operates without knowledge of the other source; the decoder jointly decodes the encoded bit streams from both sources. The work of Slepian and Wolf describes all rates achievable by MASCs of infinite coding dimension (n --> infinity) and asymptotically negligible error probabilities (P-e((n)) --> 0). In this paper, we consider the properties of optimal instantaneous MASCs with finite coding dimension (n 0) performance. The interest in near-lossless codes is inspired by the discontinuity in the limiting rate region at P-e((n)) = 0 and the resulting performance benefits achievable by using near-lossless MASCs as entropy codes within lossy MASCs. Our central results include generalizations of Huffman and arithmetic codes to the MASC framework for arbitrary p(x, y), n, and P-e((n)) and polynomial-time design algorithms that approximate these optimal solutions
    corecore